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Classifying the 
function of proteins 
in the interactome

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel 
protein–protein interactions. Nature.

https://www.nature.com/articles/npjschz201612%3FWT.feed_name=subjects_neuroscience


¡ (Supervised) Machine Learning Lifecycle 
requires feature engineering every 
single time!
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Goal: Efficient task-independent 
feature learning for machine learning 

in networks!
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vecnode

𝑓: 𝑢 → ℝ!

ℝ!
Feature representation, 

embedding

u



What is network embedding?
• We map each node in a network into a low-

dimensional space
– Distributed representation for nodes
– Similarity between nodes indicate the link 

strength 
– Encode network information and generate node 

representation

17

Task: We map each node in a network to a 
point in a low-dimensional space
§ Distributed representation for nodes
§ Similarity of embedding between nodes indicates 

their network similarity
§ Encode network information and generate node 

representation
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2D embedding of nodes of the Zachary’s 
Karate Club network:
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Example

• Zachary’s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

https://arxiv.org/pdf/1403.6652.pdf


¡ Modern deep learning toolbox is designed 
for simple sequences or grids
§ CNNs for fixed-size images/grids….

§ RNNs or word2vec for text/sequences…
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But networks are far more complex!
¡ Complex topographical structure (no spatial 

locality like grids)

¡ No fixed node ordering or reference point
¡ Often dynamic and have multimodal features.
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vs.

Networks Images

Text





Assume we have a graph G:

¡ V is the vertex set

¡ A is the adjacency matrix (assume binary)

¡ No node features or extra information is 
used!
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¡ Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the original 
network  
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similarity(u, v) ⇡ z>v zuGoal:

Need to define!
in the original network Similarity of the embedding



1. Define an encoder (i.e., a mapping from 
nodes to embeddings)

2. Define a node similarity function (i.e., a 
measure of similarity in the original 
network)

3. Optimize the parameters of the encoder 
so that:
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similarity(u, v) ⇡ z>v zu
in the original network Similarity of the embedding



¡ Encoder maps each node to a low-
dimensional vector

¡ Similarity function specifies how relationships 
in vector space map to relationships in the 
original network
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enc(v) = zv
node in the input graph

d-dimensional 
embedding

Similarity of u and v in 
the original network

dot product between node 
embeddings

similarity(u, v) ⇡ z>v zu



¡ Simplest encoding approach: encoder is just 
an embedding-lookup
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Matrix, each column is 𝑑-dim node 
embedding  [what we learn!]
Indicator vector, all zeroes 
except a one in column 
indicating node 𝑣

enc(v) = Zv

Z 2 Rd⇥|V|

v 2 I|V|



¡ Simplest encoding approach: encoder is just 
an embedding-lookup
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Z = Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node



Simplest encoding approach: encoder is 
just an embedding-lookup

Each node is assigned a unique 
embedding vector

Many methods: node2vec, DeepWalk, LINE
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Key choice of methods is how they define node 
similarity.

E.g., should two nodes have similar embeddings 
if they….
¡ are connected?
¡ share neighbors?
¡ have similar “structural roles”?
¡ …?
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Material based on:
• Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
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Probability that 𝑢
and 𝑣 co-occur on 
a random walk over 

the network

z>u zv ⇡

𝑧! … embedding of node 𝑢



1. Estimate probability of visiting node 𝒗 on a 
random walk starting from node 𝒖 using 
some random walk strategy 𝑹

2. Optimize embeddings to encode these 
random walk statistics:

Similarity (here: dot product ≈ cos(𝜃))
encodes random walk “similarity”
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𝑧!

𝑧"



1. Expressivity: Flexible stochastic 
definition of node similarity that 
incorporates both local and higher-
order neighborhood information

2. Efficiency: Do not need to consider all 
node pairs when training; only need to 
consider pairs that co-occur on random 
walks
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¡ Intuition: Find embedding of nodes to 
𝑑-dimensional space so that node similarity is 
preserved

¡ Idea: Learn node embedding such that nearby
nodes are close together in the network

¡ Given a node 𝒖, how do we define nearby 
nodes?
§ 𝑁! 𝑢 … neighbourhood of 𝑢 obtained by some 

strategy 𝑅
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¡ Given 𝐺 = (𝑉, 𝐸)
¡ Our goal is to learn a mapping 𝑧: 𝑢 → ℝ!

¡ Maximize log-likelihood objective: 

max
"

8
# ∈%

log P(𝑁&(𝑢)| 𝑧#)

§ where 𝑁!(𝑢) is neighborhood of node 𝑢

¡ Given node 𝑢, we want to learn feature 
representations predictive of  nodes in its 
neighborhood 𝑁&(𝑢)
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1. Run short fixed-length random walks 
starting from each node on the graph using 
some strategy R

2. For each node 𝑢 collect 𝑁'(𝑢), the multiset*
of nodes visited on random walks starting 
from u

3. Optimize embeddings according to: Given 
node 𝑢, predict its neighbors 𝑁&(𝑢)

max
"

8
# ∈%

log P(𝑁&(𝑢)| 𝑧#)
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*𝑁!(𝑢) can have repeat elements since nodes can be visited multiple times on random walks



max
"

8
# ∈%

log P(𝑁&(𝑢)| 𝑧#)

¡ Assumption: Conditional likelihood factorizes 
over the set of neighbors:

log P(𝑁&(𝑢)|𝑧#) = 8
(∈)!(#)

log P(z( | 𝑧#)

¡ Softmax parametrization:
Pr z( 𝑧#) =

,-.(/"⋅"#)
∑$∈& ,-.(/'⋅"#)
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Why softmax?
We want node 𝑣 to be 
most similar to node 𝑢
(out of all nodes 𝑛).
Intuition: ∑" exp 𝑥" ≈
max
"
exp(𝑥")
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Putting it all together:

sum over all 
nodes 𝑢

sum over nodes 𝑣
seen on random 

walks starting from 𝑢

predicted probability of 𝑢
and 𝑣 co-occuring on 

random walk

Optimizing random walk embeddings =

Finding node embeddings 𝒛 that minimize L

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆
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But doing this naively is too expensive!!

Nested sum over nodes gives 
O(|V|2)	complexity!

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆
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But doing this naively is too expensive!!

The normalization term from the softmax is the 
culprit… can we approximate it? 

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆



¡ Solution: Negative sampling

Instead of normalizing w.r.t. all nodes, just 
normalize against 𝑘 random “negative samples” 𝑛2
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sigmoid function
(makes each term a “probability” 

between 0 and 1)

random distribution over 
all nodes

log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆

⇡ log(�(z>u zv))�
kX

i=1

log(�(z>u zni)), ni ⇠ PV

Why is the approximation valid?
Technically, this is a different objective. But 
Negative Sampling is a form of Noise 
Contrastive Estimation (NCE) which approx. 
maximizes the log probability of softmax.

New formulation corresponds to using a 
logistic regression (sigmoid func.) to 
distinguish the target node 𝑣 from nodes 𝑛!
sampled from background distribution 𝑃".

More at https://arxiv.org/pdf/1402.3722.pdf and
https://arxiv.org/pdf/1410.8251.pdf

https://arxiv.org/pdf/1402.3722.pdf
https://arxiv.org/pdf/1410.8251.pdf


log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆

⇡ log(�(z>u zv))�
kX

i=1

log(�(z>u zni)), ni ⇠ PV
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random distribution 
over all nodes

§ Sample 𝑘 negative nodes proportional to degree
§ Two considerations for 𝑘 (# negative samples):

1. Higher 𝑘 gives more robust estimates

2. Higher 𝑘 corresponds to higher prior on negative events

In practice 𝑘 =5-20



1. Run short fixed-length random walks starting from 
each node on the graph using some strategy R.

2. For each node u collect NR(u), the multiset of 
nodes visited on random walks starting from u	

3. Optimize embeddings using Stochastic Gradient 
Descent:
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We can efficiently approximate this using 
negative sampling!

L =
X

u2V

X

v2NR(u)

� log(P (v|zu))



¡ So far we have described how to optimize 
embeddings given random walk statistics

¡ What strategies should we use to run these 
random walks?
§ Simplest idea: Just run fixed-length, unbiased 

random walks starting from each node (i.e., 
DeepWalk from Perozzi et al., 2013).
§ The issue is that such notion of similarity is too constrained

§ How can we generalize this?
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https://arxiv.org/abs/1403.6652


¡ Goal: Embed nodes with similar network 
neighborhoods close in the feature space

¡ We frame this goal as prediction-task independent 
maximum likelihood optimization problem

¡ Key observation: Flexible notion of network 
neighborhood  𝑁!(𝑢) of node 𝑢 leads to rich node 
embeddings

¡ Develop biased 2nd order random walk 𝑅 to 
generate network neighborhood 𝑁!(𝑢) of node 𝑢

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37



Idea: use flexible, biased random walks that can 
trade off between local and global views of the 
network (Grover and Leskovec, 2016).  
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ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


Two classic strategies to define a neighborhood 
𝑁' 𝑢 of a given node 𝑢:

Walk of length 3 (𝑁' 𝑢 of size 3):
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𝑁345 𝑢 = { 𝑠6, 𝑠7, 𝑠8}

𝑁945 𝑢 = { 𝑠:, 𝑠;, 𝑠<}
Local microscopic view
Global macroscopic view
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and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-



Biased fixed-length random walk 𝑹 that given a 
node 𝒖 generates neighborhood 𝑵𝑹 𝒖
¡ Two parameters:
§ Return parameter 𝒑:

§ Return back to the previous node

§ In-out parameter 𝒒:
§ Moving outwards (DFS) vs. inwards (BFS)
§ Intuitively, 𝑞 is the “ratio” of BFS vs. DFS
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Biased 2nd-order random walks explore network 
neighborhoods:

§ Rnd. walk just traversed edge (𝑠#, 𝑤) and is now at 𝑤
§ Insight: Neighbors of 𝑤 can only be:

Idea: Remember where that walk came from
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s1

s2

w
s3

u
Back to 𝒔𝟏

Same distance to 𝒔𝟏

Farther from 𝒔𝟏



¡ Walker came over edge (s6, w) and is at w. 
Where to go next?

¡ 𝑝, 𝑞 model transition probabilities
§ 𝑝 … return parameter
§ 𝑞 … “walk away” parameter
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1

1/𝑞
1/𝑝

1/𝑝, 1/𝑞, 1 are 
“unnormalized” 
probabilities (weights 
we later convert to 
probability distribution)s1

s2

w
s3

u s4

1/𝑞



¡ Walker came over edge (s6, w) and is at w. 
Where to go next?

§ BFS-like walk: Low value of 𝑝
§ DFS-like walk: Low value of 𝑞

𝑁'(𝑢) are the nodes visited by the biased walk
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w →
s1
s2
s3
s4

1/𝑝
1
1/𝑞
1/𝑞

Unnormalized
transition prob.
segmented based 
on distance from 𝑠!

Dist. (𝒔𝟏, 𝒕)

0
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2
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¡ 1) Compute random walk probabilities
¡ 2) Simulate 𝑟 random walks of length 𝑙 starting 

from each node 𝑢
¡ 3) Optimize the node2vec objective using 

Stochastic Gradient Descent

Linear-time complexity. 
All 3 steps are individually parallelizable
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Small network of interactions of characters in a 
novel:
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Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance
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discount for performance gain observed purely because of the im-
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rameters are set such that they generate equal samples at runtime.
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for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.
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In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
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• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
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(POS) tags as listed in the Penn Tree Bank [24] and inferred
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equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
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(not covered in detailed here but for your reference)
¡ Different kinds of biased random walks:

§ Based on node attributes (Dong et al., 2017).
§ Based on a learned weights (Abu-El-Haija et al., 2017)

¡ Alternative optimization schemes:
§ Directly optimize based on 1-hop and 2-hop random walk 

probabilities (as in LINE from Tang et al. 2015).
¡ Network preprocessing techniques:

§ Run random walks on modified versions of the original 
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al. 
2016’s HARP).
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https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845


¡ How to use embeddings 𝒛𝒊 of nodes:
§ Clustering/community detection: Cluster 

nodes/points based on 𝑧$
§ Node classification: Predict label 𝑓(𝑧$) of node 𝑖

based on 𝑧$
§ Link prediction: Predict edge (𝑖, 𝑗) based on 𝑓(𝑧$ , 𝑧%)

§ Where we can: concatenate, avg, product, or take a 
difference between the embeddings:
§ Concatenate: 𝑓(𝑧!, 𝑧")= 𝑔([𝑧!, 𝑧"])
§ Hadamard: 𝑓(𝑧!, 𝑧")= 𝑔(𝑧! ∗ 𝑧") (per coordinate product)

§ Sum/Avg: 𝑓(𝑧!, 𝑧")= 𝑔(𝑧! + 𝑧")
§ Distance: 𝑓(𝑧!, 𝑧")= 𝑔(||𝑧! − 𝑧"||#)

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49



¡ So what method should I use..?
¡ No one method wins in all cases….
§ E.g., node2vec performs better on node classification 

while multi-hop methods performs better on link 
prediction (Goyal and Ferrara, 2017 survey)

¡ Random walk approaches are generally more 
efficient

¡ In general: Must choose def’n of node 
similarity that matches your application!
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https://arxiv.org/abs/1705.02801




¡ Tasks:
§ Classifying toxic vs. non-toxic 

molecules
§ Identifying cancerogenic 

molecules
§ Graph anomaly detection
§ Classifying social networks

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53



¡ Goal: Want  to embed an entire graph 𝐺
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𝒛*



Simple idea: 
¡ Run a standard node embedding 

technique on the (sub)graph 𝐺
¡ Then just sum (or average) the node 

embeddings in the (sub)graph 𝐺

¡ Used by Duvenaud et al., 2016 to classify 
molecules based on their graph structure
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𝑧! = #
"∈!

𝑧"

https://arxiv.org/abs/1509.09292


¡ Idea: Introduce a “virtual node” to represent 
the (sub)graph and run a standard graph 
embedding technique

¡ Proposed by Li et al., 2016 as a general 
technique for subgraph embedding
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