Graph Representation
Learning

CS547 Machine Learning for Big Data
Tim Althoff
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Example: Link Prediction

o d o 3 X

e S
Machine w4
Learning

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2



Machine Learning in Networks
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Example: Node Classification
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel
protein—protein interactions. Nature.
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https://www.nature.com/articles/npjschz201612%3FWT.feed_name=subjects_neuroscience

Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle
requires feature engineering every
single time!
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Feature Learning in Graphs

Goal: Efficient task-independent
feature learning for machine learning
in networks!

node vec
u >
d
U > N
fru->R -
R4

Feature representation,
embedding
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Why network embedding?

Task: We map each node in a network to a
point in a low-dimensional space

Distributed representation for nodes

Similarity of embedding between nodes indicates
their network similarity

Encode network information and generate node
representation

Latent Dimensions _
e Anomaly Detection

e Attribute Prediction
> >e Clustering
e Link Prediction
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Example Node Embedding

2D embedding of nodes of the Zachary’s

Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.
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https://arxiv.org/pdf/1403.6652.pdf

Why Is It Hard?

Modern deep learning toolbox is designed
for simple sequences or grids

CNNs for fixed-size images/grids....
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RNNs or word2vec for text/sequences...

©

® ®
T\
W oooe . T 4

| |
® ® ®

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Why Is It Hard?

But networks are far more complex!
Complex topographical structure (no spatial
locality like grids)

e i

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features.
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Embedding Nodes



Setup

Assume we have a graph G:
Vis the vertex set

A is the adjacency matrix (assume binary)
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Embedding Nodes

= Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the original
network
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Embedding Nodes

Goal: similarity(u, v)

in the original network

-

R Z,, Zo,

Similarity of the embedding

Need to definel

original network

embedding space
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Learning Node Embeddings

5/4/20

Define an encoder (i.e., a mapping from
nodes to embeddings)

Define a node similarity function (i.e., a
measure of similarity in the original
network)

Optimize the parameters of the encoder
so that:

similarity (u, v) ~ z, z,

in the original network Similarity of the embedding
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Two Key Components

Encoder maps each node to a low-
dimensional vector d-dimensional
ENC(v) =z,  embedding
node In the input graph
Similarity function specifies how relationships

in vector space map to relationships in the
original network

similarity(u, v) & ZI Zq,
Similarity of zand vin dot product between node

the original network embeddings

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16



“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

ENC(v) = Zv

Z de |V\ Matrix, each column is d-dim node
S embedding [what we learnl]

T ‘ AW | Indicator vector, all zeroes
V & except a one in column
iIndicating node v

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

embedding vector for a

embedding specific node
matrix
Z o Dimension/size
— of embeddings

one column per node
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“Shallow” Encoding

Simplest encoding approach: encoder is
just an embedding-lookup

Each node is assighed a unique
embedding vector

Many methods: node2vec, DeepWalk, LINE
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How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

E.g., should two nodes have similar embeddings
if they....

are connected?

share neighbors?

have similar “structural roles”?
?
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Random Walk Approaches to
Node Embeddings

Material based on:
 Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
 Grover et al. 2016. node?vec: Scalable Feature | earning for Networks. KDD.



https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Random-walk Embeddings
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Random-walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

!
Pr(v|u)

Optimize embeddings to encode these
random walk statistics:

Similarity (here: dot product = cos(8))
encodes random walk “similarity” 5 0 x Pr(vu)
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Why Random Walks?

5/4/20

Expressivity: Flexible stochastic
definition of node similarity that
incorporates both local and higher-
order neighborhood information

Efficiency: Do not need to consider all
node pairs when training; only need to
consider pairs that co-occur on random
walks



Unsupervised Feature Learning

5/4/20

Intuition: Find embedding of nodes to
d-dimensional space so that node similarity is
preserved

Idea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby
nodes?

Nr(u) ... neighbourhood of u obtained by some
strategy R

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Feature learning as optimization

5/4/20

Given ¢ = (V,E)
Our goal is to learn a mapping z: u —» R

Maximize log-likelihood objective:

max ) logP(Np ()] 7,)

uev
where Ny (u) is neighborhood of node u

Given node u, we want to learn feature

representations predictive of nodes in its
neighborhood NR(u)

Tim Althoff, UW C for Big Data, http://www.cs.washington.edu/cse547



Random Walk Optimization

Run short fixed-length random walks
starting from each node on the graph using
some strategy R

For each node u collect Ni (u), the multiset”
of nodes visited on random walks starting

from u
Optimize embeddings according to: Given

node u, predict its neighbors Ni (u)

max z log P(Ng ()| z,,)

uev

NR(u) can have repeat elements smce nodes can be visited multlple tlmes on random walks
5/4/ Tim Althoff, UW CS547: Machin ning for a, http://www.cs.washington.edu/cse



Random Walk Optimization

max ) log P(Np ()] 2,)

uev
Assumption: Conditional likelihood factorizes

over the set of neighbors:

log P(Ne(W)lz) = ) logP(z, | 2,)

VENR(U)
Softmax parametrization:
CxpCoy) e,
PI‘(Z |Z ) — e want node v to be
vIi4<y most similar to node u
ZnEV exp(Zn-Zu) (out of all nodes n).

Intuition: ); exp(x;) =
max exp(x;)
l
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Random Walk Optimization

Putting it all together:

L= % _bg(Z exp(z, Zo) >

=
EXP\Z,, Z
ueV veNR(u) neV p( u n)

\

sum over nodes v
seen on random

walks starting from u

Optimizing random walk embeddings =

Finding node embeddings z that minimize L
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Random Walk Optimization

But doing this naively is too expensive!!

-3 3 ()

EXPl\Z, Z
u€V vENR(u) neV p( u #n

\ /

Nested sum over nodes gives
O(|V|?) complexity!
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Random Walk Optimization

But doing this naively is too expensive!!

L=y % _10g<2 exp(z, ) )

-
EXP\Z,, Z
wEV vENR(u) neV p( U n)

The normalization term from the softmax is the
culprit... can we approximate it?
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Negative Sampling

Why is the approximation valid?
Technically, this is a different objective. But
M o 1 1 Negative Sampling is a form of Noise
SOIUthﬂ ° N egatlve Sa m pl I n g Contrastive Estimation (NCE) which approx.
maximizes the log probability of softmax.

New formulation corresponds to using a
_l_ logistic regression (sigmoid func.) to

distinguish the target node v from nodes n;
1 eXp (qu, ZU ) sampled from background distribution P,.
Og T More at https://arxiv.org/pdf/1402.3722.pdf and
nevV EXp\Z,, Z, https://arxiv.ora/pdf/1410.8251.pdf

~ log(o (2, 2,)) Zlog (2, 2n,)), i ~ Py

sigmoid function random distribution over
(makes each term a “probability” a” nOdeS

between 0 and 1)

Instead of normalizing w.r.t. all nodes, just
normalize against k random “negative samples” n;

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33
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Negative Sampling

random distribution
over all nodes

exp(zzzv)
log =
ZnEV eXp(Z Z’n)

~ log(o( z Zy)) Zlog z Zn.)),Ni ~ Py

= Sample k negative nodes proportional to degree

= Two considerations for k (# negative samples):

1. Higher k gives more robust estimates
2. Higher k corresponds to higher prior on negative events

In practice k =5-20

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Random Walks: Stepping Back

5/4/20

Run short fixed-length random walks starting from
each node on the graph using some strategy R.

For each node u collect N ,(u), the multiset of
nodes visited on random walks starting from u

Optimize embeddings using Stochastic Gradient
Descent:

L = Z Z log (U‘Zu))

ueV UENR(’LL)

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



How should we randomly walk?

= So far we have described how to optimize
embeddings given random walk statistics

= What strategies should we use to run these
random walks?
= Simplest idea: Just run fixed-length, unbiased

random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013).

= The issue is that such notion of similarity is too constrained

= How can we generalize this?

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36


https://arxiv.org/abs/1403.6652

Overview of hode2vec

5/4/20

Goal: Embed nodes with similar network
neighborhoods close in the feature space

We frame this goal as prediction-task independent
maximum likelihood optimization problem

Key observation: Flexible notion of network
neighborhood Np(u) of node u leads to rich node
embeddings

Develop biased 2" order random walk R to
generate network neighborhood N (1) of node u

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



node2vec: Biased Walks

Idea: use flexible, biased random walks that can
trade off between and views of the
network (Grover and Leskovec, 2016).
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node2vec: Biased Walks

Two classic strategies to define a neighborhood
N (u) of a given node u:

Walk of length 3 (N (u) of size 3):
Nprs(u) = { 51,52,53} Local microscopic view

Nprs(u) = { s4,55,5¢} Global macroscopic view

5/4/20 thoff, UW CS54 achi or Big Data, http://www.cs.washington.edu/cse547



Interpolating BFS and DFS

Biased fixed-length random walk R that given a
node u generates neighborhood N (u)
Two parameters:
Return parameter p:
= Return back to the previous node

In-out parameter q:

* Moving outwards (DFS) vs. inwards (BFS)
" Intuitively, g is the “ratio” of BFS vs. DFS

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Biased Random Walks

Biased 2"d-order random walks explore network
neighborhoods:

Rnd. walk just traversed edge (s;, w) and is now at w
Insight: Neighbors of w can only be:

Same distance to s

Back to s4

Idea: Remember where that walk came from

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41



Biased Random Walks

Walker came over edge (s;, w) and is at w.
Where to go next?

1/p,1/q,1 are
“‘unnormalized”
probabilities (weights
we later convert to
probability distribution)

p, g model transition probabilities
p ... return parameter
q ... “walk away” parameter
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Biased Random Walks

Walker came over edge (s1, w) and is at w.

Where to go next?

Targett Prob. Dist. (s4, 1)

s{||1/p| O
w-o S| 1 |1
ss|11/9| 2
S, 1/g] 2

Unnormalized

BFS-like walk: Low value of p transition prob.

segmented based
on distance from s,

DFS-like walk: Low value of g
N (u) are the nodes visited by the biased walk

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43



node2vec algorithm

1) Compute random walk probabilities
2) Simulate r random walks of length [ starting

from each node u
3) Optimize the node2vec objective using

Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable
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BFS vs. DFS

BFS: DFS:
Micro-view of Macro-view of
neighbourhood neighbourhood

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Experiments: Micro vs. Macro

Small network of interactions of characters in a

novel:

Microscopic view of the
network neighbourhood

5/4/20 Tim Althoff, UW CS547: Machine Learn

o=1, g=0.5
Macroscopic view of the
network neighbourhood
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Other random walk ideas

(not covered in detailed here but for your reference)

Different kinds of biased random walks:
Based on node attributes (Dong et al., 2017).
Based on a learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.

2016’s HARP).

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845

How to Use Embeddings

How to use embeddings z; of nodes:

Clustering/community detection: Cluster
nodes/points based on z;

Node classification: Predict label f (z;) of node i
based on z;

Link prediction: Predict edge (i, j) based on f(z;, z;)
Where we can: concatenate, avg, product, or take a
difference between the embeddings:

Concatenate: f(z;, zj)= 9(|zi, z;])

Hadamard: f (z;, zj)= g(z; * z;) (per coordinate product)
Sum/Avg: f(zi,zj)= 9(z; + z)

Distance: f(z;, z)= g(||z; — z|12)
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Summary so far

5/4/20

So what method should | use..?
No one method wins in all cases....

E.g., node2vec performs better on node classification
while multi-hop methods performs better on link
prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more
efficient

In general: Must choose def’n of node
similarity that matches your application!

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Embedding Entire Graphs



Graph Classification

Graph Classification

Tasks: jE mm =m
Classifying toxic vs. non-toxic
molecules —
ldentifying cancerogenic
molecules

Graph anomaly detection
Classifying social networks
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Embedding Entire Graphs

= Goal: Want to embed an entire graph G

original network embedding space

5/4/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Approach 1

Simple idea:
Run a standard node embedding
technique on the (sub)graph G

Then just sum (or average) the node
embeddings in the (sub)graph G

VEG

Used by Duvenaud et al., 2016 to classify
molecules based on their graph structure
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https://arxiv.org/abs/1509.09292

Approach 2

5/4/20

Idea: Introduce a “virtual node” to represent
the (sub)graph and run a standard graph
embedding technique

original network embedding space
Proposed by Li et al., 2016 as a general
technique for subgraph embedding

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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