
Announcements: 

- Thank you for participating in our mid-quarter evaluation

- Thank you for participating in our homework feedback polls! ☺

- Course project
- Average was ~80%

- Don’t worry about grade but take feedback seriously

- Project Milestone due Thu Sun 

- No late days and no exceptions
- Consider meeting with your assigned TA



 We often think of networks being organized 
into modules, clusters, communities:
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 Find micro-markets by partitioning the 
query-to-advertiser graph:
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[Andersen, Lang: Communities from seed sets, 2006]



 Clusters in Movies-to-Actors graph:
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[Andersen, Lang: Communities from seed sets, 2006]



 Discovering social circles, circles of trust:
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[McAuley, Leskovec: Discovering social circles in ego networks, 2012]



 Graph is large

▪ Assume the graph fits in main memory 

▪ For example, to work with a 200M node and 2B edge 
graph one needs approx. 16GB RAM

▪ But the graph is too big for running anything 
more than linear time algorithms

 We will cover a PageRank based algorithm 
for finding dense clusters

▪ The runtime of the algorithm will be proportional 
to the cluster size (not the graph size!)
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 Discovering clusters based on seed nodes
▪ Given: Seed node s

▪ Compute (approximate) Personalized PageRank 
(PPR) around node s (teleport set={s})

▪ Idea is that if s belongs to a nice cluster, the 
random walk will get trapped inside the cluster
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Seed node



 Algorithm outline:
▪ Pick a seed node s of interest

▪ Run PPR with teleport set = {s}

▪ Sort the nodes by the decreasing PPR score

▪ Sweep over the nodes and find good clusters
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Node rank in decreasing PPR score
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 Undirected graph 𝑮(𝑽,𝑬):

 Partitioning task:

▪ Divide vertices into 2 disjoint groups 𝐴, 𝐵 = 𝑉\𝐴

 Question:
▪ How can we define a “good” cluster in 𝑮?
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 What makes a good cluster?

▪ Maximize the number of within-cluster
connections

▪ Minimize the number of between-cluster 
connections
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 Express cluster quality as a function of the 
“edge cut” of the cluster

 Cut: Set of edges (edge weights) with only 
one node in the cluster:
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(set all wij=1) graphs



 Partition quality: Cut score
▪ Quality of a cluster is the weight of connections 

pointing outside the cluster
 Degenerate case:

 Problem:
▪ Only considers external cluster connections

▪ Does not consider internal cluster connectivity
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“Optimal cut”

Minimum cut



 Criterion: Conductance:
Connectivity of the group to the rest of the 
network relative to the density of the group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least 
one endpoint in 𝑨: 𝐯𝐨𝐥 𝑨 = σ𝒊∈𝑨𝒅𝒊
◼ Vol(A)=2*#edges inside A + #edges pointing out of A

◼ Why use this criterion?

◼ Produces more balanced partitions
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𝝓 = 𝟐/𝟒 = 𝟎.𝟓 𝝓 = 𝟔/𝟗𝟐 = 𝟎. 𝟎𝟔𝟓



 Algorithm outline:
▪ Pick a seed node s of 

interest
▪ Run PPR w/ teleport={s}
▪ Sort the nodes by the 

decreasing PPR score

▪ Sweep over the nodes 
and find good clusters
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 Sweep:

▪ Sort nodes in decreasing PPR score 𝑟1 > 𝑟2 > ⋯ > 𝑟𝑛
▪ For each 𝒊 compute 𝝓(𝑨𝒊 = 𝒓𝟏, … 𝒓𝒊 )

▪ Local minima of 𝝓(𝑨𝒊) correspond to good clusters



 The whole Sweep 
curve can be 
computed in linear
time:

▪ For loop over the nodes

▪ Keep hash-table of
nodes in a set 𝐴𝑖

▪ To compute 𝝓 𝑨𝒊+𝟏 = 𝐶𝑢𝑡(𝐴𝑖+1)/𝑉𝑜𝑙(𝐴𝑖+1)

▪ 𝑉𝑜𝑙 𝐴𝑖+1 = 𝑉𝑜𝑙 𝐴𝑖 + 𝑑𝑖+1
▪ 𝐶𝑢𝑡 𝐴𝑖+1 = 𝐶𝑢𝑡 𝐴𝑖 + 𝑑𝑖+1 −2#(𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑢𝑖+1 𝑡𝑜 𝐴𝑖)
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 How to compute Personalized PageRank (PPR) 
without touching the whole graph?
▪ Power method won’t work since each single iteration 

accesses all nodes of the graph:
𝐫(𝐭+𝟏) = 𝛃𝐌 ⋅ 𝐫(𝒕)+ 𝟏−𝜷 𝒂
▪ 𝒂 is a teleport vector:   𝒂 = 𝟎 …𝟎 𝟏 𝟎 …𝟎 𝑻

▪ 𝒓 is the personalized PageRank vector

 Approximate PageRank [Andersen, Chung, Lang, ‘07]

▪ A fast method for computing approximate 
Personalized PageRank (PPR) with teleport set ={s}

▪ ApproxPageRank(s, β, ε)
▪ s … seed node
▪ β … teleportation parameter
▪ ε … approximation error parameter
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At index S



 Overview of the approximate PPR
▪ Lazy random walk, which is a variant of a random walk 

that stays put with probability 1/2 at each time step, and 
walks to a random neighbor the other half of the time:

▪ Keep track of residual PPR score 𝒒𝒖 = 𝒑𝒖 − 𝒓𝒖
(𝒕)

▪ Residual tells us how well PPR score 𝑝𝑢 of 𝒖 is approximated

▪ 𝒑𝒖… is the “true” PageRank of node 𝒖

▪ 𝒓𝒖
(𝒕)

… is PageRank estimate of node 𝑢 at around 𝒕

If residual 𝒒𝒖 of node 𝒖 is too big 
𝒒𝒖

𝒅𝒖
≥ 𝜺 then push the walk 

further (distribute some of residual 𝑞𝑢 to all 𝑢’s neighbors along 
out-coming edges), else don’t touch the node

5/7/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

𝑑𝑖… degree of 𝑖



 A different way to look at PageRank:
[Jeh&Widom. Scaling Personalized Web Search, 2002]

𝒑𝜷(𝒂) = 𝟏− 𝜷 𝒂+ 𝜷 𝒑𝜷(𝑴 ⋅ 𝒂)

▪ 𝒑𝜷(𝒂) is the true PageRank vector with teleport 

parameter 𝜷, and teleport vector 𝒂

▪ 𝒑𝜷(𝑴 ⋅ 𝒂) is the PageRank vector with teleportation 

vector 𝑴 ⋅ 𝒂, and teleportation parameter 𝜷
▪ where 𝑴 is the stochastic PageRank transition matrix

▪ Notice: 𝑴 ⋅ 𝒂 is one step of a random walk
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 Proving: 𝒑𝜷(𝒂) = 𝟏 − 𝜷 𝒂+ 𝜷 𝒑𝜷(𝑴 ⋅ 𝒂)

▪ We can break this probability into two cases: 
▪ Walks of length 0, and 

▪ Walks of length longer than 0

▪ The probability of length 0 walk is 𝟏 − 𝜷, and the walk 
ends where it started, with walker distribution 𝒂

▪ The probability of walk length >0 is 𝜷, and then the walk 
starts at distribution 𝒂, takes a step, (so it has distribution 
𝑴𝒂), then takes the rest of the random walk with 
distribution 𝒑𝜷(𝑴𝒂)
▪ Note that we used the memoryless nature of the walk: After we 

know the location of the second step of the walk has distribution 
𝑴𝒂, the rest of the walk can forget where it started and behave as 
if it started at 𝑴𝒂. This is the key idea of the proof.
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 Idea:

▪ 𝒓… approx. PageRank, 𝒒… its residual PageRank

▪ Start with trivial approximation: 𝒓 = 𝟎 and 𝒒 = 𝒂

▪ Iteratively push PageRank from 𝒒 to 𝒓 until 𝒒 is small

 Push: 1 step of a lazy random walk from node 𝒖: 
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Do 1 step of a walk:

Stay at u with prob. ½
Spread remaining ½

fraction of qu as if a 

single step of random 

walk were applied to u

Update r

𝑷𝒖𝒔𝒉(𝒖,𝒓,𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖
′ = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖
′ =

𝟏

𝟐
𝜷𝒒𝒖

for each 𝒗 such that 𝒖 → 𝒗:

𝒒𝒗
′ = 𝒒𝒗 +

𝟏

𝟐
𝜷

𝒒𝒖

𝒅𝒖
return 𝒓′, 𝒒′

residual PPR score 𝒒𝒖 = 𝒑𝒖− 𝒓𝒖



 If 𝒒𝒖 is large, this 
means that we have 
underestimated the 
importance of node 𝒖

 Then we want to take some 
of that residual (𝒒𝒖) and give 
it away, since we know that we have too much of it

 So, we keep 
𝟏

𝟐
𝜷𝒒𝒖 and then give away the rest to our 

neighbors, so that we can get rid of it

▪ This correspond to the spreading of 
𝟏

𝟐
𝜷 𝒒𝒖/𝒅𝒖 term

 Each node wants to keep giving away this excess 
PageRank until all nodes have no or a very small gap in 
excess PageRank
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𝑷𝒖𝒔𝒉(𝒖,𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖
′ = 𝒓𝒖 + 𝟏 −𝜷 𝒒𝒖
𝒒𝒖
′ =

𝟏

𝟐
𝜷𝒒𝒖

for each 𝒗 such that𝒖 → 𝒗:

𝒒𝒗
′ = 𝒒𝒗 +

𝟏

𝟐
𝜷
𝒒𝒖

𝒅𝒖
return 𝒓′ , 𝒒′



 ApproxPageRank(S, β, ε):
Set 𝒓 = 0, 𝒒 = [0 . . 0 1 0…0]

While 𝐦𝐚𝐱
𝒖∈𝑽

𝒒𝒖

𝒅𝒖
≥ 𝜺:

Choose any vertex 𝒖 where 
𝑞𝑢

𝑑𝑢
≥ 𝜀

𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖
′ = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖

𝒒𝒖
′ =

𝟏

𝟐
𝜷𝒒𝒖

For each 𝒗 such that 𝒖 → 𝒗:

𝒒𝒗
′ = 𝒒𝒗 +

𝟏

𝟐
𝜷𝒒𝒖/𝒅𝒖

𝒓 = 𝒓′, 𝒒 = 𝒒′

Return 𝒓
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r … PPR vector

ru …PPR score of u

q …residual PPR vector

qu … residual of node u

du … degree of u

Update r: Move (1 − 𝛽)
of the prob. from qu to ru

1 step of a lazy 

random walk:

- Stay at qu with prob. ½ 

- Spread remaining ½ 𝜷
fraction of qu as if a 
single step of random 

walk were applied to u

At index S



 Runtime:
▪ ApproxPageRank (PageRank-Nibble) computes PPR 

in time O
𝟏

𝜺 𝟏−𝜷
with residual error ≤ 𝜺

▪ Power method would take time 𝑶(
𝐥𝐨𝐠 𝒏

𝜺(𝟏−𝜷)
)

 Graph cut approximation guarantee:
▪ If there exists a cut of conductance 𝝓 and volume 𝒌

then the method finds a cut of conductance 

𝐎( 𝝓 𝒍𝒐𝒈 𝒌)

▪ Details in [Andersen, Chung, Lang. Local graph 
partitioning using PageRank vectors, 2007]
http://www.math.ucsd.edu/~fan/wp/localpartfull.pdf
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 The smaller the ε the farther the random 
walk will spread!
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Seed node
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[Andersen, Lang: Communities from seed sets, 2006]



 Algorithm summary:
▪ Pick a seed node s of interest

▪ Run PPR with teleport set = {s}

▪ Sort the nodes by the decreasing PPR score

▪ Sweep over the nodes and find good clusters
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Seed node
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 Communities: sets of 
tightly connected nodes

 Define: Modularity 𝑸

▪ A measure of how well 
a network is partitioned 
into communities

▪ Given a partitioning of the 
network into groups 𝒔 ∈ 𝑺:

Q   ∑s S [ (# edges within group s) –

(expected # edges within group s) ]
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Need a null model!



 Given real 𝑮 on 𝒏 nodes and 𝒎 edges, 
construct rewired network 𝑮’

▪ Same degree distribution but 
random connections

▪ Consider 𝑮’ as a multigraph

▪ The expected number of edges between nodes 

𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅
𝒌𝒋

𝟐𝒎
=

𝒌𝒊𝒌𝒋

𝟐𝒎

▪ The expected number of edges in (multigraph) G’:

▪ =
𝟏

𝟐
σ𝒊∈𝑵σ𝒋∈𝑵

𝒌𝒊𝒌𝒋

𝟐𝒎
=

𝟏

𝟐
⋅
𝟏

𝟐𝒎
σ𝒊∈𝑵𝒌𝒊 σ𝒋∈𝑵𝒌𝒋 =

▪ =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎
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j

i



𝑢∈𝑉

𝑘𝑢 = 2𝑚

Note:



 Modularity of partitioning S of graph G:

▪ Q  ∑s S [ (# edges within group s) –

(expected # edges within group s) ]

▪ 𝑸 𝑮, 𝑺 =
𝟏

𝟐𝒎
σ𝒔∈𝑺σ𝒊∈𝒔σ𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋

𝟐𝒎

 Modularity values take range [−1,1]

▪ It is positive if the number of edges within 
groups exceeds the expected number

▪ Q greater than 0.3-0.7 means significant 
community structure
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Aij = 1 if i→j, 

0 else
Normalizing const.: -1<Q<1



Equivalently modularity can be written as:
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is an indicator function

Idea: We can identify communities by 
maximizing modularity





 Greedy algorithm for community detection

▪ 𝑂(𝑛 log𝑛) run time (* observed empirically)

 Supports weighted graphs
 Provides hierarchical partitions

 Widely utilized to study large networks because:

▪ Fast

▪ Rapid convergence properties

▪ High modularity output (i.e., “better communities”)
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[Fast unfolding of communities in large networks, Blondel et al. (2008)]



 Louvain algorithm greedily maximizes modularity
 Each pass is made of 2 phases:

▪ Phase 1: Modularity is optimized by allowing only 
local changes of communities

▪ Phase 2: The identified communities are aggregated
in order to build a new network of communities

▪ Goto Phase 1
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The passes are repeated 
iteratively until no increase of 

modularity is possible!



 Put each node in a graph into a distinct community 
(one node per community)

 For each node i, the algorithm performs two 
calculations: 
▪ Compute the modularity gain (∆𝑄) when putting node 𝑖

from its current community into the community of some 
neighbor 𝑗 of 𝑖

▪ Move 𝑖 to a community that yields the largest modularity 
gain ∆𝑄

 The loop runs until no movement yields a gain
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This first phase stops when a local maximum of the modularity is attained, i.e., when no individual move 

can improve the modularity. 
One should also note that the output of the algorithm depends on the order in which the nodes are 
considered. Research indicates that the ordering of the nodes does not have a significant influence on the 

modularity that is obtained.



What is 𝚫𝑸 if we move node 𝒊 to community 𝑪?

▪ where:

▪ Σ𝑖𝑛… sum of link weights between nodes in 𝐶

▪ Σ𝑡𝑜𝑡… sum of all link weights of nodes in 𝐶

▪
𝑘𝑖,𝑖𝑛

2
… sum of link weights between node 𝑖 and 𝐶

▪ 𝑘𝑖… sum of all link weights (i.e., degree) of node 𝑖

 Also need to derive Δ𝑄 𝐷 → 𝑖 of taking 
node 𝑖 out of community 𝐷.

 And then: Δ𝑄 = Δ𝑄 𝑖 → 𝐶 + Δ𝑄 𝐷 → 𝑖
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Δ𝑄 𝑖 → 𝐶

Σ𝑖𝑛:

Σ𝑡𝑜𝑡:



 The partitions obtained in the first phase are 
contracted into super-nodes, and the 
weighted network is created as follows

▪ Super-nodes are connected if there is at least one 
edge between nodes of the corresponding 
communities

▪ The weight of the edge between the two super-
nodes is the sum of the weights from all edges 
between their corresponding partitions

 The loop runs until the community 
configuration does not change anymore
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