
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

Announcements: 
• Submit your project group TODAY (Ed Pinned Post)

• Project Proposal due this Thursday (no late periods)

• Upload homework on time (23:59pm)!



It is always possible to decompose a real 
matrix A into A = U  VT , where

 U, , V: unique*
 U, V: column orthonormal
▪ UT U = I; VT V = I (I: identity matrix)

▪ (Columns are orthogonal unit vectors)
 : diagonal
▪ Entries (singular values) are positive, 

and sorted in decreasing order (σ1  σ2  ...  0)

* Up to permutations for redundant singular values and orientation of singular vectors (details)
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http://db.cs.duke.edu/courses/cps111/spring07/notes/12.pdf
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 Customer X

▪ Buys Metallica CD

▪ Buys Megadeth CD

 Customer Y
▪ Does search on Metallica

▪ Recommender system 
suggests Megadeth from 
data collected about 
customer X
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Items

Search Recommendations

Products, web sites, 

blogs, news items, …

Examples:



 Shelf space is a scarce commodity for 
traditional retailers 
▪ Also: TV networks, movie theaters,…

 Web enables near-zero-cost dissemination 
of information about products
▪ From scarcity to abundance

 More choice necessitates better filters:
▪ Recommendation engines

▪ Association rules: How Into Thin Air made Touching 
the Void a bestseller: 
http://www.wired.com/wired/archive/12.10/tail.html
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http://www.wired.com/wired/archive/12.10/tail.html
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Source: Chris Anderson (2004)
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Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

http://www.wired.com/wired/archive/12.10/tail.html


 Editorial and hand curated

▪ List of favorites

▪ Lists of “essential” items

 Simple aggregates

▪ Top 10, Most Popular, Recent Uploads

 Tailored to individual users

▪ Amazon, Netflix, …
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Today’s class



 X = set of Customers
 S = set of Items

 Utility function u: X × S → R

▪ R = set of ratings

▪ R is a totally ordered set

▪ e.g., 1-5 stars, real number in [0,1]
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 (1) Gathering “known” ratings for matrix
▪ How to collect the data in the utility matrix

 (2) Extrapolating unknown ratings from the 
known ones
▪ Mainly interested in high unknown ratings
▪ We are not interested in knowing what you don’t like 

but what you like

 (3) Evaluating extrapolation methods
▪ How to measure success/performance of

recommendation methods
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 Explicit
▪ Ask people to rate items

▪ Doesn’t work well in practice – people 
don’t like being bothered

▪ Crowdsourcing: Pay people to label items

 Implicit
▪ Learn ratings from user actions
▪ E.g., purchase implies high rating

▪ E.g., add to playlist, play in full, skip song…

▪ What about low ratings?
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 Key problem: Utility matrix U is sparse

▪ Most people have not rated most items

▪ Cold Start Problem: 

▪ New items have no ratings

▪ New users have no history

 Three approaches to recommender systems:

▪ 1) Content-based

▪ 2) Collaborative

▪ 3) Latent factor based
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Today!





 Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:
 Movie recommendations

▪ Recommend movies with same actor(s), 
director, genre, …

 Websites, blogs, news

▪ Recommend other sites with “similar” content
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 For each item, create an item profile

 Profile is a set (vector) of features

▪ Movies: author, title, actor, director,…

▪ Text: Set of “important” words in document

 How to pick important features?

▪ Usual heuristic from text mining is TF-IDF
(Term frequency * Inverse Doc Frequency)

▪ Term … Feature

▪ Document … Item
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fij = frequency of term (feature) i in doc (item) j

ni = number of docs that mention term i
N = total number of docs

TF-IDF score: wij = TFij × IDFi

Doc profile = set of words with highest TF-IDF 
scores, together with their scores
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Note: we normalize 

TF to discount for 

“longer” documents

Large when term i
appears often in doc j

Large when term i appears 
in very few documents

Added pink notes



 User profile possibilities:
▪ Weighted average of rated item profiles

▪ Variation: weight by difference from average 
rating for item

 Prediction heuristic: Cosine similarity of user 
and item profiles)
▪ Given user profile x and item profile i, estimate 

𝑢 𝒙, 𝒊 = cos 𝒙, 𝒊 =
𝒙·𝒊

𝒙 ⋅ 𝒊

 How do you quickly find items closest to 𝒙?
▪ Job for LSH!
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 +: No need for data on other users

▪ No cold-start or sparsity problems

 +: Able to recommend to users with 
unique tastes

 +: Able to recommend new & unpopular items

▪ No first-rater problem

 +: Able to provide explanations

▪ Can provide explanations of recommended items by 
listing content-features that caused an item to be 
recommended
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 –: Finding the appropriate features is hard

▪ E.g., images, movies, music

 –: Recommendations for new users

▪ How to build a user profile?

 –: Overspecialization

▪ Never recommends items outside user’s 
content profile

▪ People might have multiple interests

▪ ! Unable to exploit quality judgments of other users!
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Harnessing quality judgments of other users



 Consider user x

 Find set N of other 
users whose ratings 
are “similar” to 
x’s ratings

 Estimate x’s ratings 
based on ratings 
of users in N
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 Let rx be the vector of user x’s ratings
 Jaccard similarity metric
▪ Problem: Ignores the value of the rating 

 Cosine similarity metric

▪ sim(x, y) = cos(rx, ry) = 
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

▪ Problem: Treats some missing ratings as “negative”
 Better: Pearson correlation coefficient
▪ Sxy = items rated by both users x and y
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rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as sets:

rx = {1, 4, 5}

ry = {1, 3, 4}

rx, ry as points:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}

rx, ry … avg.

rating of x, y



 Intuitively we want: sim(A, B) > sim(A, C)
 Jaccard similarity: 1/5 < 2/4
 Cosine similarity: 0.380 > 0.322

▪ Considers missing ratings as “negative”

▪ Solution: subtract the (row) mean
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sim A,B vs. A,C:

0.092 > -0.559

Notice cosine sim. is 

correlation when 

data is centered at 0

𝒔𝒊𝒎(𝒙, 𝒚) =
σ𝒊 𝒓𝒙𝒊 ⋅ 𝒓𝒚𝒊

σ𝒊 𝒓𝒙𝒊
𝟐 ⋅ σ𝒊 𝒓𝒚𝒊

𝟐

Cosine sim:



From similarity metric to recommendations:
 Let rx be the vector of user x’s ratings
 Let N be the set of k users most similar to x

who have rated item i
 Prediction for item i of user x:

▪ 𝑟𝑥𝑖 =
1

𝑘
σ𝑦∈𝑁 𝑟𝑦𝑖

▪ Or even better: 

 Many other tricks possible…
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Shorthand:
𝒔𝒙𝒚 = 𝒔𝒊𝒎 𝒙, 𝒚



 So far: User-user collaborative filtering
 Another view: Item-item

▪ For item i, find other similar items

▪ Estimate rating for item i based 
on ratings for similar items

▪ Can use same similarity metrics and 
prediction functions as in user-user model
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Here we use Pearson correlation as similarity:

1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows

s1,m
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 Define similarity sij of items i and j
 Select k nearest neighbors N(i; x)

▪ Items most similar to i, that were rated by x

 Estimate rating rxi as the weighted average: 
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 In practice, it has been observed that item-item
often works better than user-user

 Why? Items are simpler, users have multiple tastes



 + Works for any kind of item
▪ No feature selection needed

 - Cold Start:
▪ Need enough users in the system to find a match

 - Sparsity: 
▪ The user/ratings matrix is sparse
▪ Hard to find users that have rated the same items

 - First rater: 
▪ Cannot recommend an item that has not been 

previously rated
▪ New items, Esoteric items

 - Popularity bias: 
▪ Cannot recommend items to someone with 

unique taste 
▪ Tends to recommend popular items
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 Implement two or more different 
recommenders and combine predictions

▪ Perhaps using a linear model

 Add content-based methods to 
collaborative filtering

▪ Item profiles for new item problem

▪ Demographics to deal with new user problem
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- Evaluation
- Error metrics
- Complexity / Speed
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 Compare predictions with known ratings
▪ Root-mean-square error (RMSE)

▪
1

𝑁
σ𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖

∗ 2
where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊

∗ is the true rating of x on i

▪ N is the number of points we are making comparisons on

▪ Rank Correlation: 
▪ Spearman’s correlation between system’s and user’s complete rankings

▪ Precision at top 10 (or k): 
▪ % of those in top 10 (or k)

 Another approach: 0/1 model
▪ Coverage:
▪ Number of items/users for which the system can make predictions 

▪ Precision:
▪ Accuracy of predictions 

▪ Receiver operating characteristic (ROC)
▪ Tradeoff curve between false positives and false negatives
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Idea: ignore lowly-ranked items

Added green note & rearranged order of bullets 



 Narrow focus on accuracy sometimes 
misses the point

▪ Prediction Diversity

▪ Prediction Context

▪ Order of predictions

 In practice, we care only to predict high 
ratings:

▪ RMSE might penalize a method that does well 
for high ratings and badly for others
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 Expensive step is finding k most similar 
customers: O(|X|) 

 Too expensive to do at runtime

▪ Could pre-compute

 Pre-computation takes time O(k ·|X|)
▪ X … set of customers

 We already know how to do this!

▪ Near-neighbor search in high dimensions (LSH)

▪ Clustering

▪ Dimensionality reduction
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 Leverage all the data

▪ Don’t try to reduce data size in an 
effort to make fancy algorithms work

▪ Simple methods on large data do best

 Add more data

▪ e.g., add IMDB data on genres

 More data beats better algorithms
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
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 Training data

▪ 100 million ratings, 480,000 users, 17,770 movies
▪ Lots of ratings – still 99% sparsity!

▪ 6 years of data: 2000-2005

 Test data (private)

▪ Last few ratings of each user (2.8 million)

▪ Evaluation criterion: root mean squared error (RMSE) 

▪ Netflix Cinematch RMSE (production): 0.9514

 Competition

▪ 2700+ teams

▪ $1 million prize for 10% improvement on Cinematch
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 Next topic: Recommendations via 
Latent Factor models
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The bubbles above represent products sized by sales volume. 

Products close to each other are recommended to each other. 
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[slide from winning BellkorTeam]
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Dumb and 
Dumber



Koren, Bell, Volinksy, IEEE Computer, 2009
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