
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

Announcements:
• Submit your project group TODAY (Ed Pinned Post)

• Project Proposal due this Thursday (no late periods)

• Upload homework on time (23:59pm)!

It is always possible to decompose a real
matrix A into A = U  VT , where

 U, , V: unique*
 U, V: column orthonormal
▪ UT U = I; VT V = I (I: identity matrix)

▪ (Columns are orthogonal unit vectors)
 : diagonal
▪ Entries (singular values) are positive,

and sorted in decreasing order (σ1  σ2  ...  0)

* Up to permutations for redundant singular values and orientation of singular vectors (details)

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2

http://db.cs.duke.edu/courses/cps111/spring07/notes/12.pdf

High dim.
data

Locality
sensitive
hashing

Clustering

Dimension-
ality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Sampling
data

streams

Filtering
data

streams

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen-
der systems

Association
Rules

Duplicate
document
detection

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

 Customer X

▪ Buys Metallica CD

▪ Buys Megadeth CD

 Customer Y
▪ Does search on Metallica

▪ Recommender system
suggests Megadeth from
data collected about
customer X

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5

Items

Search Recommendations

Products, web sites,

blogs, news items, …

Examples:

 Shelf space is a scarce commodity for
traditional retailers
▪ Also: TV networks, movie theaters,…

 Web enables near-zero-cost dissemination
of information about products
▪ From scarcity to abundance

 More choice necessitates better filters:
▪ Recommendation engines

▪ Association rules: How Into Thin Air made Touching
the Void a bestseller:
http://www.wired.com/wired/archive/12.10/tail.html

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

http://www.wired.com/wired/archive/12.10/tail.html

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7

Source: Chris Anderson (2004)

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

http://www.wired.com/wired/archive/12.10/tail.html

 Editorial and hand curated

▪ List of favorites

▪ Lists of “essential” items

 Simple aggregates

▪ Top 10, Most Popular, Recent Uploads

 Tailored to individual users

▪ Amazon, Netflix, …

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9

Today’s class

 X = set of Customers
 S = set of Items

 Utility function u: X × S → R

▪ R = set of ratings

▪ R is a totally ordered set

▪ e.g., 1-5 stars, real number in [0,1]

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

0.4

10.2

0.30.5

0.21

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 11

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

 (1) Gathering “known” ratings for matrix
▪ How to collect the data in the utility matrix

 (2) Extrapolating unknown ratings from the
known ones
▪ Mainly interested in high unknown ratings
▪ We are not interested in knowing what you don’t like

but what you like

 (3) Evaluating extrapolation methods
▪ How to measure success/performance of

recommendation methods

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

 Explicit
▪ Ask people to rate items

▪ Doesn’t work well in practice – people
don’t like being bothered

▪ Crowdsourcing: Pay people to label items

 Implicit
▪ Learn ratings from user actions
▪ E.g., purchase implies high rating

▪ E.g., add to playlist, play in full, skip song…

▪ What about low ratings?

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13

 Key problem: Utility matrix U is sparse

▪ Most people have not rated most items

▪ Cold Start Problem:

▪ New items have no ratings

▪ New users have no history

 Three approaches to recommender systems:

▪ 1) Content-based

▪ 2) Collaborative

▪ 3) Latent factor based

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14

Today!

 Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:
 Movie recommendations

▪ Recommend movies with same actor(s),
director, genre, …

 Websites, blogs, news

▪ Recommend other sites with “similar” content

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 17

likes

Item profiles

Red

Circles

Triangles

User profile

match

recommend
build

 For each item, create an item profile

 Profile is a set (vector) of features

▪ Movies: author, title, actor, director,…

▪ Text: Set of “important” words in document

 How to pick important features?

▪ Usual heuristic from text mining is TF-IDF
(Term frequency * Inverse Doc Frequency)

▪ Term … Feature

▪ Document … Item

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

fij = frequency of term (feature) i in doc (item) j

ni = number of docs that mention term i
N = total number of docs

TF-IDF score: wij = TFij × IDFi

Doc profile = set of words with highest TF-IDF
scores, together with their scores

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 19

Note: we normalize

TF to discount for

“longer” documents

Large when term i
appears often in doc j

Large when term i appears
in very few documents

Added pink notes

 User profile possibilities:
▪ Weighted average of rated item profiles

▪ Variation: weight by difference from average
rating for item

 Prediction heuristic: Cosine similarity of user
and item profiles)
▪ Given user profile x and item profile i, estimate

𝑢 𝒙, 𝒊 = cos 𝒙, 𝒊 =
𝒙·𝒊

𝒙 ⋅ 𝒊

 How do you quickly find items closest to 𝒙?
▪ Job for LSH!

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

 +: No need for data on other users

▪ No cold-start or sparsity problems

 +: Able to recommend to users with
unique tastes

 +: Able to recommend new & unpopular items

▪ No first-rater problem

 +: Able to provide explanations

▪ Can provide explanations of recommended items by
listing content-features that caused an item to be
recommended

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 21

 –: Finding the appropriate features is hard

▪ E.g., images, movies, music

 –: Recommendations for new users

▪ How to build a user profile?

 –: Overspecialization

▪ Never recommends items outside user’s
content profile

▪ People might have multiple interests

▪ ! Unable to exploit quality judgments of other users!

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

Harnessing quality judgments of other users

 Consider user x

 Find set N of other
users whose ratings
are “similar” to
x’s ratings

 Estimate x’s ratings
based on ratings
of users in N

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

x

N

 Let rx be the vector of user x’s ratings
 Jaccard similarity metric
▪ Problem: Ignores the value of the rating

 Cosine similarity metric

▪ sim(x, y) = cos(rx, ry) =
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

▪ Problem: Treats some missing ratings as “negative”
 Better: Pearson correlation coefficient
▪ Sxy = items rated by both users x and y

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as sets:

rx = {1, 4, 5}

ry = {1, 3, 4}

rx, ry as points:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}

rx, ry … avg.

rating of x, y

 Intuitively we want: sim(A, B) > sim(A, C)
 Jaccard similarity: 1/5 < 2/4
 Cosine similarity: 0.380 > 0.322

▪ Considers missing ratings as “negative”

▪ Solution: subtract the (row) mean

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

sim A,B vs. A,C:

0.092 > -0.559

Notice cosine sim. is

correlation when

data is centered at 0

𝒔𝒊𝒎(𝒙, 𝒚) =
σ𝒊 𝒓𝒙𝒊 ⋅ 𝒓𝒚𝒊

σ𝒊 𝒓𝒙𝒊
𝟐 ⋅ σ𝒊 𝒓𝒚𝒊

𝟐

Cosine sim:

From similarity metric to recommendations:
 Let rx be the vector of user x’s ratings
 Let N be the set of k users most similar to x

who have rated item i
 Prediction for item i of user x:

▪ 𝑟𝑥𝑖 =
1

𝑘
σ𝑦∈𝑁 𝑟𝑦𝑖

▪ Or even better:

 Many other tricks possible…

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

Shorthand:
𝒔𝒙𝒚 = 𝒔𝒊𝒎 𝒙, 𝒚

 So far: User-user collaborative filtering
 Another view: Item-item

▪ For item i, find other similar items

▪ Estimate rating for item i based
on ratings for similar items

▪ Can use same similarity metrics and
prediction functions as in user-user model

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28










=

);(

);(

xiNj ij

xiNj xjij

xi
s

rs
r

sij… similarity of items i and j

rxj…rating of user x on item j

N(i;x)… set items which were rated by x

and similar to i

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29

121110987654321

455311

3124452

534321423

245424

5224345

423316

users

m
o

vi
e

s

- unknown rating - rating between 1 to 5

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 30

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

- estimate rating of movie 1 by user 5

m
o

vi
e

s

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Neighbor selection:

Identify movies similar to

movie 1, rated by user 5

m
o

vi
e

s

1.00

-0.18

0.41

-0.10

-0.31

0.59

Here we use Pearson correlation as similarity:

1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows

s1,m

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Compute similarity weights:

s1,3=0.41, s1,6=0.59

m
o

vi
e

s

1.00

-0.18

0.41

-0.10

-0.31

0.59

s1,m

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

121110987654321

4552.6311

3124452

534321423

245424

5224345

423316

users

Predict by taking weighted average:

r1.5 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

m
o

vi
e

s

𝒓𝒊𝒙 =
σ𝒋∈𝑵(𝒊;𝒙)𝒔𝒊𝒋 ⋅ 𝒓𝒋𝒙

σ𝒔𝒊𝒋

 Define similarity sij of items i and j
 Select k nearest neighbors N(i; x)

▪ Items most similar to i, that were rated by x

 Estimate rating rxi as the weighted average:

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 34

baseline estimate for rxi  μ = overall mean movie rating
 bx = rating deviation of user x

= (avg. rating of user x) – μ
 bi = rating deviation of movie i








=

);(

);(

xiNj ij

xiNj xjij

xi
s

rs
r

Before:








−

+=

);(

);(
)(

xiNj ij

xiNj xjxjij

xixi
s

brs
br

𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊

0.41

8.010.9

0.30.5

0.81

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

 In practice, it has been observed that item-item
often works better than user-user

 Why? Items are simpler, users have multiple tastes

 + Works for any kind of item
▪ No feature selection needed

 - Cold Start:
▪ Need enough users in the system to find a match

 - Sparsity:
▪ The user/ratings matrix is sparse
▪ Hard to find users that have rated the same items

 - First rater:
▪ Cannot recommend an item that has not been

previously rated
▪ New items, Esoteric items

 - Popularity bias:
▪ Cannot recommend items to someone with

unique taste
▪ Tends to recommend popular items

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

 Implement two or more different
recommenders and combine predictions

▪ Perhaps using a linear model

 Add content-based methods to
collaborative filtering

▪ Item profiles for new item problem

▪ Demographics to deal with new user problem

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37

- Evaluation
- Error metrics
- Complexity / Speed

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

1 3 4

3 5 5

4 5 5

3

3

2 2 2

5

2 1 1

3 3

1

movies

users

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40

1 3 4

3 5 5

4 5 5

3

3

2 ? ?

?

2 1 ?

3 ?

1

Test Data Set

users

movies

 Compare predictions with known ratings
▪ Root-mean-square error (RMSE)

▪
1

𝑁
σ𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖

∗ 2
where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊

∗ is the true rating of x on i

▪ N is the number of points we are making comparisons on

▪ Rank Correlation:
▪ Spearman’s correlation between system’s and user’s complete rankings

▪ Precision at top 10 (or k):
▪ % of those in top 10 (or k)

 Another approach: 0/1 model
▪ Coverage:
▪ Number of items/users for which the system can make predictions

▪ Precision:
▪ Accuracy of predictions

▪ Receiver operating characteristic (ROC)
▪ Tradeoff curve between false positives and false negatives

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

Idea: ignore lowly-ranked items

Added green note & rearranged order of bullets

 Narrow focus on accuracy sometimes
misses the point

▪ Prediction Diversity

▪ Prediction Context

▪ Order of predictions

 In practice, we care only to predict high
ratings:

▪ RMSE might penalize a method that does well
for high ratings and badly for others

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

 Expensive step is finding k most similar
customers: O(|X|)

 Too expensive to do at runtime

▪ Could pre-compute

 Pre-computation takes time O(k ·|X|)
▪ X … set of customers

 We already know how to do this!

▪ Near-neighbor search in high dimensions (LSH)

▪ Clustering

▪ Dimensionality reduction

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43

 Leverage all the data

▪ Don’t try to reduce data size in an
effort to make fancy algorithms work

▪ Simple methods on large data do best

 Add more data

▪ e.g., add IMDB data on genres

 More data beats better algorithms
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 44

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

 Training data

▪ 100 million ratings, 480,000 users, 17,770 movies
▪ Lots of ratings – still 99% sparsity!

▪ 6 years of data: 2000-2005

 Test data (private)

▪ Last few ratings of each user (2.8 million)

▪ Evaluation criterion: root mean squared error (RMSE)

▪ Netflix Cinematch RMSE (production): 0.9514

 Competition

▪ 2700+ teams

▪ $1 million prize for 10% improvement on Cinematch

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 46

 Next topic: Recommendations via
Latent Factor models

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47

Overview of Coffee Varieties

FR
TE

S6

S5
L5

S3

S2S1

R8

R6

R5

R4
R3R2

L4

C7

S7

F9 F8 F6

F5

F4

F3 F2F1F0

I2
C6I1

C4
C3
C2

C1

B2

B1
S4

Complexity of Flavor

E
x
o

ti
c
n

e
s
s
 /
 P

ri
c
e

Flavored

Exotic

Popular Roasts

and Blends

a1

The bubbles above represent products sized by sales volume.

Products close to each other are recommended to each other.

Geared
towards
females

Geared
towards
males

serious

Less serious

The Princess
Diaries

The Lion
King

Braveheart

Independence
Day

AmadeusThe Color
Purple

Ocean’s 11

Sense and
Sensibility

Gus

Dave

4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 48

[slide from winning BellkorTeam]

Lethal
Weapon

Dumb and
Dumber

Koren, Bell, Volinksy, IEEE Computer, 2009
4/20/2020 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49

