

¡ We realize that this is a hard time for many
¡ We are committed to a great learning experience

for all of you, even in these complicated
circumstances

¡ We are making substantial changes to course and
teaching to improve your experience.
§ Changes include less homework assignments, practical

lab notebooks to work through individually, and more
opportunities for project feedback (details later).

¡ Please understand that this is a complex situation
for everyone and bear with us while we figure
out how to teach a large course online.

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2

¡ All students are muted but turning on video is
optional but very appreciated J

¡ Let’s make this engaging! Ask your questions
through zoom chat!
§ If you know the answer, feel free to reply J
§ I will ask you questions, too! Use chat to reply.

¡ For questions after the lecture, Tim will stay
for a few minutes. Also Tim’s office hours will
be right after class on Tuesdays.

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

Data contains value and knowledge

¡ But to extract the knowledge data
needs to be
§ Stored (systems)
§ Managed (databases)
§ And ANALYZED ß this class

Data Mining ≈ Big Data ≈
Predictive Analytics ≈

Data Science ≈ Machine Learning
3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5

¡ Data mining = extraction of actionable
information from (usually) very large
datasets, is the subject of extreme hype,
fear, and interest

¡ It’s not all about machine learning
¡ But some of it is

¡ Emphasis in CS547 on algorithms that scale
§ Parallelization often essential

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

¡ Descriptive methods
§ Find human-interpretable patterns that

describe the data
§ Example: Clustering

¡ Predictive methods
§ Use some variables to predict unknown

or future values of other variables
§ Example: Recommender systems

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7

¡ This combines best of machine learning,
statistics, artificial intelligence, databases but
emphasis on
§ Scalability (big data)
§ Algorithms
§ Computing architectures
§ Automation for handling

large data

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

Machine

Learning

Theory,
Algorithms

Data Mining

Database
systems

¡ We will learn to mine different types of data:
§ Data is high dimensional
§ Data is a graph
§ Data is infinite/never-ending
§ Data is labeled

¡ We will learn to use different models of
computation:
§ MapReduce
§ Streams and online algorithms
§ Single machine in-memory

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9

¡ We will learn to solve real-world problems:
§ Recommender systems
§ Market Basket Analysis
§ Spam detection
§ Duplicate document detection

¡ We will learn various “tools”:
§ Linear algebra (SVD, Rec. Sys., Communities)
§ Optimization (stochastic gradient descent)
§ Dynamic programming (frequent itemsets)
§ Hashing (LSH, Bloom filters)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Network
Analysis

Spam
Detection

Infinite
data

Sampling
data

streams

Filtering
data

streams

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 11

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

I ♥data

How do you want that data?

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14

¡ Office hours:
§ See course website www.cs.washington.edu/cse547

for TA office hours
§ We start Office Hours next week (April 6)

§ Tim: Tuesdays 11:30-12:30am, Zoom
§ TA office hours: see website and calendar

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 15

http://www.cs.washington.edu/cse547

¡ Course website:
www.cs.washington.edu/cse547
§ Lecture slides (at least 30min before the lecture)
§ Homeworks, readings

¡ Class textbook: Mining of Massive Datasets by
A. Rajaraman, J. Ullman, and J. Leskovec
§ Sold by Cambridge Uni. Press but available for free

at http://mmds.org
§ Course based on textbook and Stanford CS246

course by Leskovec and others

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

http://www.cs.washington.edu/cse547
http://mmds.org/

¡ Ed Q&A website:
§ https://us.edstem.org/courses/422/discussion/
§ Use Ed for all questions and public communication

& announcements
§ Search the forum before asking a question
§ Please tag your posts and please no one-liners

¡ For emergencies & personal matters, email
course staff always at:
§ cse547-instructors@cs.washington.edu

¡ We will post course announcements to Ed
(make sure you check it regularly)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 17

https://us.edstem.org/courses/422/discussion/
http://cs.washington.edu

¡ Spark tutorial and help session:
§ Thursday, April 2, 1-3 PM, Zoom

¡ Review of basic probability and proof
techniques
§ Tuesday, April 7, 3:30-5:30 PM, Zoom

¡ Review of linear algebra:
§ Thursday, April 9, 1-3 PM, Zoom

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

¡ 4 longer homeworks: 40%
§ Four major assignments, involving programming,

proofs, algorithm development.
§ Assignments take lots of time (+20h). Start early!!

¡ How to submit?
§ Homework write-up:

§ Submit via Gradescope
§ Course code: MP8KGN

§ Everyone uploads code:
§ Put all the code for 1 question into 1 file and submit via

Gradescope
3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 19

http://www.gradescope.com/

¡ 4 longer homeworks: 40%
§ Four major assignments, involving programming,

proofs, algorithm development.
§ Assignments take lots of time (+20h). Start early!!

¡ How to submit?
§ Homework write-up:

§ Submit via Gradescope
§ Course code: MP8KGN

§ Everyone uploads code:
§ Put all the code for 1 question into 1 file and submit via

Gradescope
3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

http://www.gradescope.com/

¡ Short weekly Colab notebooks: 20%
§ Colab notebooks are posted every Thursday

§ 10 in total, from 0 to 9, each worth 2%
§ Due one week later on Thursday 23:59 PST. No late days!

§ First 2 Colabs will be posted on Thu, including detailed
submission instructions to Gradescope (unlimited attempts)

§ Colab 0 (Spark Tutorial) will be solved in real-time during
Spark recitation session!

§ Colabs require at most 1hr of work
§ few lines of code!

§ “Colab” is a free cloud service from Google, hosting
Jupyter notebooks with free access to GPU and TPU

3/30/20 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 21

¡ Homework schedule (without weekly Colabs)

§ Two late periods for HWs for the quarter:
§ Late period expires 48 hours after the original deadline
§ Can use max 1 late period per HW (not for Project / Colabs)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

Date (23:59 PT) Released Due
03/31, Today
04/02, Thu HW1 (and Colab 0/1)
04/16, Thu HW2 HW0, HW1
04/23, Thu Project Proposal
04/30, Thu HW3 HW2
05/07, Thu Project Milestone
05/14, Thu HW4 HW3
05/28, Thu HW4
06/07, Sun Project Report
06/08, Mon Project Presentation

¡ Course Project: 40%
§ Project proposal (20%)
§ Project milestone report (20%)
§ Final project report (50%)
§ Project Presentation (10%)
§ More details on course website

¡ Teams of (up to) three students each
§ Start planning now
§ Find students in class, office hours, or through Ed
§ Find dataset to work on – also see course website

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23

¡ Project Presentation
§ Monday, June 10, 10:00am-1:00pm
§ You have to be present
§ Location: Zoom
§ Exact format will be announced on website

¡ Extra credit: Up to 2% of your grade
§ For participating in Ed discussions

§ Especially valuable are answers to questions posed by
other students

§ Reporting bugs in course materials
§ See course website for details

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

¡ Programming: Python
¡ Basic Algorithms: e.g., CS332/CS373 or

CS417/CS421
¡ Probability: any introductory course
§ There will be a review session and a review doc is

linked from the class home page
¡ Linear algebra: (e.g., Math 308 or equivalent)
§ Another review doc + review session is available

¡ Rigorous proofs & Multivariable calculus
(e.g., CS311 or equivalent)

¡ Database systems (SQL, relational algebra)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

¡ Each of the topics listed is important for a
small part of the course:
§ If you are missing an item of background, you

could consider just-in-time learning of the needed
material

¡ The exception is programming:
§ To do well in this course, you really need to be

comfortable with writing code in Python

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

¡ We’ll follow the standard CS Dept. approach:
You can get help, but you MUST acknowledge
the help on the work you hand in
§ www.cs.washington.edu/academics/misconduct

¡ Failure to acknowledge your sources is a
violation of academic integrity

¡ We use plagiarism tools to check the
originality of your code

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

http://www.cs.washington.edu/academics/misconduct

¡ You can talk to others about the algorithm(s) to
be used to solve a homework problem;
§ As long as you then mention their name(s) on the

work you submit
¡ You should not use code of others or be looking

at code of others when you write your own:
§ You can talk to people but have to write your own

solution/code
§ If you fail to mention your sources, plagiarism tools

will catch you, and you will be charged with a
academic integrity violation

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

¡ CS547 is fast paced!
§ Requires programming maturity
§ Strong math skills

§ Some students tend to be rusty on math/theory
¡ Course time commitment:
§ Homeworks take +20h
§ Significant course project

¡ Form study groups
¡ Form project groups

¡ It’s going to be fun and hard work. J

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29

¡ 5 to-do items for you:
§ Make sure you can access Canvas & Ed
§ Register to Gradescope
§ Consider attending recitation sessions
§ Start planning course project (topic, team, dataset)
§ Complete Colab 0/1 released on Thursday

§ Colab 0/1 should take you about one hour to complete
(Note this is a “toy” homework to get you started. Real
homeworks will be much more challenging and longer.)

¡ Additional details/instructions at
http://www.cs.washington.edu/cse547

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 30

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

¡ Large-scale computing for data mining
problems on commodity hardware

¡ Challenges:
§ How do you distribute computation?
§ How can we make it easy to write distributed

programs?
§ Machines fail:

§ One server may stay up 3 years (1,000 days)
§ If you have 1,000 servers, expect to lose 1/day
§ With 1M machines 1,000 machines fail every day!

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

¡ Issue:
Copying data over a network takes time

¡ Idea:
§ Bring computation to data
§ Store files multiple times for reliability

¡ Spark/Hadoop address these problems
§ Storage Infrastructure – File system

§ Google: GFS. Hadoop: HDFS

§ Programming model
§ MapReduce
§ Spark

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 34

¡ Problem:
§ If nodes fail, how to store data persistently?

¡ Answer:
§ Distributed File System

§ Provides global file namespace
¡ Typical usage pattern:
§ Huge files (100s of GB to TB)
§ Data is rarely updated in place
§ Reads and appends are common

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

¡ Chunk servers
§ File is split into contiguous chunks
§ Typically each chunk is 16-64MB
§ Each chunk replicated (usually 2x or 3x)
§ Try to keep replicas in different racks

¡ Master node
§ a.k.a. Name Node in Hadoop’s HDFS
§ Stores metadata about where files are stored
§ Might be replicated

¡ Client library for file access
§ Talks to master to find chunk servers
§ Connects directly to chunk servers to access data

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

¡ Reliable distributed file system
¡ Data kept in “chunks” spread across machines
¡ Each chunk replicated on different machines
§ Seamless recovery from disk or machine failure

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

¡ MapReduce is a style of programming
designed for:
1. Easy parallel programming
2. Invisible management of hardware and software

failures
3. Easy management of very-large-scale data

¡ It has several implementations, including
Hadoop, Spark (used in this class), Flink, and
the original Google implementation just called
“MapReduce”

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

3 steps of MapReduce
¡ Map:

§ Apply a user-written Map function to each input element
§ Mapper applies the Map function to a single element

§ Many mappers grouped in a Map task (the unit of parallelism)
§ The output of the Map function is a set of 0, 1, or more

key-value pairs.
¡ Group by key: Sort and shuffle

§ System sorts all the key-value pairs by key, and
outputs key-(list of values) pairs

¡ Reduce:
§ User-written Reduce function is applied to each

key-(list of values)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

Outline stays the same, Map and Reduce change to fit the problem

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,

Sort, Partition)

Reduce:
Collect all values
belonging to the
key and output

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

All phases are distributed with many tasks doing the work

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

Mappers Reducers

Input Output

key-value
pairs

Example MapReduce task:
¡ We have a huge text document
¡ Count the number of times each

distinct word appears in the file

¡ Many applications of this:
§ Analyze web server logs to find popular URLs
§ Statistical machine translation:

§ Need to count number of times every 5-word sequence
occurs in a large corpus of documents

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 44

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing -
- is what we're going to
need ……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)

(recently, 1)
…

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

eq
ue

nt
ia

lly
re

ad
 th

e
da

ta
O

nl
y

se

qu
en

tia
l

 r
ea

ds

map(key, value):
key: document name; value: text of the document

for each word w in value:
emit(w, 1)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

reduce(key, values):
key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

MapReduce environment takes care of:
¡ Partitioning the input data
¡ Scheduling the program’s execution across a

set of machines
¡ Performing the group by key step
§ In practice this is is the bottleneck

¡ Handling machine failures
¡ Managing required inter-machine

communication

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 46

¡ Map worker failure
§ Map tasks completed or in-progress at

worker are reset to idle and rescheduled
§ Reduce workers are notified when map task is

rescheduled on another worker
¡ Reduce worker failure
§ Only in-progress tasks are reset to idle and the

reduce task is restarted

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47

¡ Two major limitations of MapReduce:
§ Difficulty of programming directly in MR

§ Many problems aren’t easily described as map-reduce
§ Performance bottlenecks, or batch not fitting the

use cases
§ Persistence to disk typically slower than in-memory work

¡ In short, MR doesn’t compose well for large
applications
§ Many times one needs to chain multiple map-

reduce steps

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49

¡ MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce
§ Data flows from the first rank to the second

¡ Data-Flow Systems generalize this in two ways:
1. Allow any number of tasks/ranks
2. Allow functions other than Map and Reduce
§ As long as data flow is in one direction only, we can

have the blocking property and allow recovery of
tasks rather than whole jobs

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

¡ Expressive computing system, not limited to
the map-reduce model

¡ Additions to MapReduce model:
§ Fast data sharing

§ Avoids saving intermediate results to disk
§ Caches data for repetitive queries (e.g. for machine learning)

§ General execution graphs (DAGs)
§ Richer functions than just map and reduce

¡ Compatible with Hadoop
3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51

¡ Open source software (Apache Foundation)
¡ Supports Java, Scala and Python

¡ Key construct/idea: Resilient Distributed Dataset
(RDD)

¡ Higher-level APIs: DataFrames & DataSets
§ Introduced in more recent versions of Spark
§ Different APIs for aggregate data, which allowed to

introduce SQL support

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52

Key concept Resilient Distributed Dataset (RDD)
§ Partitioned collection of records

§ Generalizes (key-value) pairs
¡ Spread across the cluster, Read-only
¡ Caching dataset in memory

§ Different storage levels available
§ Fallback to disk possible

¡ RDDs can be created from Hadoop, or by
transforming other RDDs (you can stack RDDs)

¡ RDDs are best suited for applications that apply the
same operation to all elements of a dataset

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

¡ Transformations build RDDs through
deterministic operations on other RDDs:
§ Transformations include map, filter, join, union,

intersection, distinct
§ Lazy evaluation: Nothing computed until an action

requires it

¡ Actions to return value or export data
§ Actions include count, collect, reduce, save
§ Actions can be applied to RDDs; actions force

calculations and return values
3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 54

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition

= RDD

map

¡ Supports general task graphs
¡ Pipelines functions where possible
¡ Cache-aware data reuse & locality
¡ Partitioning-aware to avoid shuffles

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 55

¡ DataFrame:
§ Unlike an RDD, data organized into named columns,

e.g. a table in a relational database.
§ Imposes a structure onto a distributed collection of

data, allowing higher-level abstraction
¡ Dataset:

§ Extension of DataFrame API which provides type-safe,
object-oriented programming interface (compile-time
error detection)

Both built on Spark SQL engine. Both can be
converted back to an RDD

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 56

¡ Spark SQL

¡ Spark Streaming – stream processing of live
datastreams

¡ MLlib – scalable machine learning
¡ GraphX – graph manipulation
§ extends Spark RDD with Graph abstraction: a

directed multigraph with properties attached to
each vertex and edge

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 57

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 58

¡ Performance: Spark normally faster but with caveats
§ Spark can process data in-memory; Hadoop

MapReduce persists back to the disk after a map or
reduce action

§ Spark generally outperforms MapReduce, but it often
needs lots of memory to perform well; if there are
other resource-demanding services or can’t fit in
memory, Spark degrades

§ MapReduce easily runs alongside other services with
minor performance differences, & works well with the
1-pass jobs it was designed for

¡ Ease of use: Spark is easier to program (higher-level
APIs)

¡ Data processing: Spark is more general

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 59

¡ Suppose we have a large web corpus
¡ Look at the metadata file
§ Lines of the form: (URL, size, date, …)

¡ For each host, find the total number of bytes
§ That is, the sum of the page sizes for all URLs from

that particular host

¡ Other examples:
§ Link analysis and graph processing
§ Machine Learning algorithms

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 61

¡ Statistical machine translation:
§ Need to count number of times every 5-word

sequence occurs in a large corpus of documents

¡ Very easy with MapReduce:
§ Map:

§ Extract (5-word sequence, count) from document

§ Reduce:
§ Combine the counts

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 62

¡ Compute the natural join R(A,B) ⋈ S(B,C)
¡ R and S are each stored in files
¡ Tuples are pairs (a,b) or (b,c)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 63

A B
a1 b1
a2 b1
a3 b2
a4 b3

B C
b2 c1
b2 c2
b3 c3

⋈
A C
a3 c1
a3 c2
a4 c3

=

R
S

¡ Use a hash function h from B-values to 1...k
¡ A Map process turns:
§ Each input tuple R(a,b) into key-value pair (b,(a,R))
§ Each input tuple S(b,c) into (b,(c,S))

¡ Map processes send each key-value pair with
key b to Reduce process h(b)
§ Hadoop does this automatically; just tell it what k is.

¡ Each Reduce process matches all the pairs
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 64

¡ MapReduce is great for:
§ Problems that require sequential data access
§ Large batch jobs (not interactive, real-time)

¡ MapReduce is inefficient for problems where
random (or irregular) access to data required:
§ Graphs
§ Interdependent data

§ Machine learning
§ Comparisons of many pairs of items

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 65

¡ In MapReduce we quantify the cost of an
algorithm using

1. Communication cost = total I/O of all
processes

2. Elapsed communication cost = max of I/O
along any path

3. (Elapsed) computation cost analogous, but
count only running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 66

Get course handout on website!

Recitation sessions:
¡ Spark Tutorial using Colab 0:

Thu, April 2, 1-3pm on Zoom
¡ Review of basic probability and proof

techniques
Tue, April 7, 3:30-5:30 PM, Zoom

¡ Review of linear algebra:
Thursday, April 9, 1-3 PM, Zoom

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 70

