


¡ We realize that this is a hard time for many
¡ We are committed to a great learning experience 

for all of you, even in these complicated 
circumstances

¡ We are making substantial changes to course and 
teaching to improve your experience.
§ Changes include less homework assignments, practical 

lab notebooks to work through individually, and more 
opportunities for project feedback (details later). 

¡ Please understand that this is a complex situation 
for everyone and bear with us while we figure 
out how to teach a large course online.
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¡ All students are muted but turning on video is 
optional but very appreciated J

¡ Let’s make this engaging! Ask your questions 
through zoom chat!
§ If you know the answer, feel free to reply J
§ I will ask you questions, too! Use chat to reply.

¡ For questions after the lecture, Tim will stay 
for a few minutes. Also Tim’s office hours will 
be right after class on Tuesdays.
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Data contains value and knowledge



¡ But to extract the knowledge data 
needs to be
§ Stored (systems)
§ Managed (databases)
§ And ANALYZED ß this class

Data Mining ≈ Big Data ≈ 
Predictive Analytics ≈ 

Data Science  ≈ Machine Learning
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¡ Data mining = extraction of actionable 
information from (usually) very large 
datasets, is the subject of extreme hype, 
fear, and interest

¡ It’s not all about machine learning
¡ But some of it is

¡ Emphasis in CS547 on algorithms that scale
§ Parallelization often essential
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¡ Descriptive methods
§ Find human-interpretable patterns that 

describe the data
§ Example: Clustering

¡ Predictive methods
§ Use some variables to predict unknown 

or future values of other variables
§ Example: Recommender systems
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¡ This combines best of machine learning, 
statistics, artificial intelligence, databases but 
emphasis on
§ Scalability (big data)
§ Algorithms
§ Computing architectures
§ Automation for handling 

large data
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¡ We will learn to mine different types of data:
§ Data is high dimensional
§ Data is a graph
§ Data is infinite/never-ending
§ Data is labeled

¡ We will learn to use different models of 
computation:
§ MapReduce
§ Streams and online algorithms
§ Single machine in-memory
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¡ We will learn to solve real-world problems:
§ Recommender systems
§ Market Basket Analysis
§ Spam detection
§ Duplicate document detection

¡ We will learn various “tools”:
§ Linear algebra (SVD, Rec. Sys., Communities)
§ Optimization (stochastic gradient descent)
§ Dynamic programming (frequent itemsets)
§ Hashing (LSH, Bloom filters)
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I ♥data

How do you want that data?





3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14



¡ Office hours:
§ See course website www.cs.washington.edu/cse547

for TA office hours
§ We start Office Hours next week (April 6)

§ Tim: Tuesdays 11:30-12:30am, Zoom
§ TA office hours: see website and calendar 
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¡ Course website: 
www.cs.washington.edu/cse547
§ Lecture slides (at least 30min before the lecture)
§ Homeworks, readings

¡ Class textbook: Mining of Massive Datasets by 
A. Rajaraman, J. Ullman, and J. Leskovec
§ Sold by Cambridge Uni. Press but available for free 

at http://mmds.org
§ Course based on textbook and Stanford CS246 

course by Leskovec and others
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¡ Ed Q&A website:
§ https://us.edstem.org/courses/422/discussion/
§ Use Ed for all questions and public communication 

& announcements
§ Search the forum before asking a question
§ Please tag your posts and please no one-liners

¡ For emergencies & personal matters, email 
course staff always at:
§ cse547-instructors@cs.washington.edu

¡ We will post course announcements to Ed 
(make sure you check it regularly)
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¡ Spark tutorial and help session:
§ Thursday, April 2, 1-3 PM, Zoom

¡ Review of basic probability and proof 
techniques
§ Tuesday, April 7, 3:30-5:30 PM, Zoom

¡ Review of linear algebra:
§ Thursday, April 9, 1-3 PM, Zoom
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¡ 4 longer homeworks: 40%
§ Four major assignments, involving programming, 

proofs, algorithm development.
§ Assignments take lots of time (+20h). Start early!!

¡ How to submit?
§ Homework write-up:

§ Submit via Gradescope
§ Course code: MP8KGN

§ Everyone uploads code:
§ Put all the code for 1 question into 1 file and submit via 

Gradescope
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¡ Short weekly Colab notebooks: 20%
§ Colab notebooks are posted every Thursday

§ 10 in total, from 0 to 9, each worth 2%
§ Due one week later on Thursday 23:59 PST. No late days! 

§ First 2 Colabs will be posted on Thu, including detailed 
submission instructions to Gradescope (unlimited attempts)

§ Colab 0 (Spark Tutorial) will be solved in real-time during 
Spark recitation session!

§ Colabs require at most 1hr of work
§ few lines of code!

§ “Colab” is a free cloud service from Google, hosting 
Jupyter notebooks with free access to GPU and TPU
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¡ Homework schedule (without weekly Colabs)

§ Two late periods for HWs for the quarter:
§ Late period expires 48 hours after the original deadline
§ Can use max 1 late period per HW (not for Project / Colabs)
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Date (23:59 PT) Released Due
03/31, Today
04/02, Thu HW1 (and Colab 0/1)
04/16, Thu HW2 HW0, HW1
04/23, Thu Project Proposal
04/30, Thu HW3 HW2
05/07, Thu Project Milestone
05/14, Thu HW4 HW3
05/28, Thu HW4
06/07, Sun Project Report
06/08, Mon Project Presentation



¡ Course Project: 40%
§ Project proposal (20%)
§ Project milestone report (20%)
§ Final project report (50%)
§ Project Presentation (10%)
§ More details on course website

¡ Teams of (up to) three students each
§ Start planning now
§ Find students in class, office hours, or through Ed
§ Find dataset to work on – also see course website
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¡ Project Presentation
§ Monday, June 10, 10:00am-1:00pm 
§ You have to be present
§ Location: Zoom
§ Exact format will be announced on website

¡ Extra credit: Up to 2% of your grade 
§ For participating in Ed discussions

§ Especially valuable are answers to questions posed by 
other students

§ Reporting bugs in course materials
§ See course website for details
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¡ Programming:  Python 
¡ Basic Algorithms: e.g., CS332/CS373 or 

CS417/CS421
¡ Probability: any introductory course
§ There will be a review session and a review doc is 

linked from the class home page
¡ Linear algebra: (e.g., Math 308 or equivalent)
§ Another review doc + review session is available

¡ Rigorous proofs & Multivariable calculus 
(e.g., CS311 or equivalent)

¡ Database systems (SQL, relational algebra)
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¡ Each of the topics listed is important for a 
small part of the course:
§ If you are missing an item of background, you 

could consider just-in-time learning of the needed 
material

¡ The exception is programming:
§ To do well in this course, you really need to be 

comfortable with writing code in Python
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¡ We’ll follow the standard CS Dept. approach: 
You can get help, but you MUST acknowledge 
the help on the work you hand in
§ www.cs.washington.edu/academics/misconduct

¡ Failure to acknowledge your sources is a 
violation of academic integrity

¡ We use plagiarism tools to check the 
originality of your code
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¡ You can talk to others about the algorithm(s) to 
be used to solve a homework problem;
§ As long as you then mention their name(s) on the 

work you submit
¡ You should not use code of others or be looking 

at code of others when you write your own:
§ You can talk to people but have to write your own 

solution/code
§ If you fail to mention your sources, plagiarism tools 

will catch you, and you will be charged with a 
academic integrity violation

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28



¡ CS547 is fast paced!
§ Requires programming maturity
§ Strong math skills

§ Some students tend to be rusty on math/theory
¡ Course time commitment:
§ Homeworks take +20h
§ Significant course project 

¡ Form study groups
¡ Form project groups

¡ It’s going to be fun and hard work. J
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¡ 5 to-do items for you:
§ Make sure you can access Canvas & Ed
§ Register to Gradescope
§ Consider attending recitation sessions
§ Start planning course project (topic, team, dataset)
§ Complete Colab 0/1 released on Thursday

§ Colab 0/1 should take you about one hour to complete
(Note this is a “toy” homework to get you started. Real 
homeworks will be much more challenging and longer.)

¡ Additional details/instructions at 
http://www.cs.washington.edu/cse547
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¡ Large-scale computing for data mining 
problems on commodity hardware

¡ Challenges:
§ How do you distribute computation?
§ How can we make it easy to write distributed 

programs?
§ Machines fail:

§ One server may stay up 3 years (1,000 days)
§ If you have 1,000 servers, expect to lose 1/day
§ With 1M machines 1,000 machines fail every day!
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¡ Issue:
Copying data over a network takes time

¡ Idea:
§ Bring computation to data
§ Store files multiple times for reliability

¡ Spark/Hadoop address these problems
§ Storage Infrastructure – File system

§ Google: GFS. Hadoop: HDFS

§ Programming model
§ MapReduce
§ Spark
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¡ Problem:
§ If nodes fail, how to store data persistently? 

¡ Answer:
§ Distributed File System

§ Provides global file namespace
¡ Typical usage pattern:
§ Huge files (100s of GB to TB)
§ Data is rarely updated in place
§ Reads and appends are common
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¡ Chunk servers
§ File is split into contiguous chunks
§ Typically each chunk is 16-64MB
§ Each chunk replicated (usually 2x or 3x)
§ Try to keep replicas in different racks

¡ Master node
§ a.k.a. Name Node in Hadoop’s HDFS
§ Stores metadata about where files are stored
§ Might be replicated

¡ Client library for file access
§ Talks to master to find chunk servers 
§ Connects directly to chunk servers to access data
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¡ Reliable distributed file system
¡ Data kept in “chunks” spread across machines
¡ Each chunk replicated on different machines 
§ Seamless recovery from disk or machine failure

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers



¡ MapReduce is a style of programming
designed for:
1. Easy parallel programming
2. Invisible management of hardware and software 

failures
3. Easy management of very-large-scale data

¡ It has several implementations, including 
Hadoop, Spark (used in this class), Flink, and 
the original Google implementation just called 
“MapReduce”
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3 steps of MapReduce
¡ Map:

§ Apply a user-written Map function to each input element
§ Mapper applies the Map function to a single element

§ Many mappers grouped in a Map task (the unit of parallelism)
§ The output of the Map function is a set of 0, 1, or more 

key-value pairs.
¡ Group by key: Sort and shuffle

§ System sorts all the key-value pairs by key, and
outputs key-(list of values) pairs

¡ Reduce:
§ User-written Reduce function is applied to each 

key-(list of values)
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Outline stays the same, Map and Reduce change to fit the problem
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All phases are distributed with many tasks doing the work
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Example MapReduce task:
¡ We have a huge text document
¡ Count the number of times each 

distinct word appears in the file

¡ Many applications of this:
§ Analyze web server logs to find popular URLs
§ Statistical machine translation:

§ Need to count number of times every 5-word sequence 
occurs in a large corpus of documents
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The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing -
- is what we're going to
need ……………………..
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map(key, value):
# key: document name; value: text of the document

for each word w in value:
emit(w, 1)
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reduce(key, values):
# key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)



MapReduce environment takes care of:
¡ Partitioning the input data
¡ Scheduling the program’s execution across a 

set of machines
¡ Performing the group by key step
§ In practice this is is the bottleneck

¡ Handling machine failures
¡ Managing required inter-machine 

communication
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¡ Map worker failure
§ Map tasks completed or in-progress at 

worker are reset to idle and rescheduled
§ Reduce workers are notified when map task is 

rescheduled on another worker
¡ Reduce worker failure
§ Only in-progress tasks are reset to idle and the 

reduce task is restarted
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¡ Two major limitations of MapReduce:  
§ Difficulty of programming directly in MR 

§ Many problems aren’t easily described as map-reduce
§ Performance bottlenecks, or batch not fitting the 

use cases 
§ Persistence to disk typically slower than in-memory work

¡ In short, MR doesn’t compose well for large 
applications
§ Many times one needs to chain multiple map-

reduce steps
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¡ MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce
§ Data flows from the first rank to the second

¡ Data-Flow Systems generalize this in two ways:
1. Allow any number of tasks/ranks
2. Allow functions other than Map and Reduce
§ As long as data flow is in one direction only, we can 

have the blocking property and allow recovery of 
tasks rather than whole jobs
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¡ Expressive computing system, not limited to 
the map-reduce model

¡ Additions to MapReduce model: 
§ Fast data sharing 

§ Avoids saving intermediate results to disk
§ Caches data for repetitive queries (e.g. for machine learning)

§ General execution graphs (DAGs)
§ Richer functions than just map and reduce

¡ Compatible with Hadoop
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¡ Open source software (Apache Foundation)
¡ Supports Java, Scala and Python

¡ Key construct/idea: Resilient Distributed Dataset 
(RDD)

¡ Higher-level APIs: DataFrames & DataSets
§ Introduced in more recent versions of Spark
§ Different APIs for aggregate data, which allowed to 

introduce SQL support
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Key concept Resilient Distributed Dataset (RDD)
§ Partitioned collection of records

§ Generalizes (key-value) pairs
¡ Spread across the cluster, Read-only
¡ Caching dataset in memory

§ Different storage levels available
§ Fallback to disk possible

¡ RDDs can be created from Hadoop, or by 
transforming other RDDs (you can stack RDDs)

¡ RDDs are best suited for applications that apply the 
same operation to all elements of a dataset
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¡ Transformations build RDDs through 
deterministic operations on other RDDs:
§ Transformations include map, filter, join, union, 

intersection, distinct
§ Lazy evaluation: Nothing computed until an action 

requires it

¡ Actions to return value or export data
§ Actions include count, collect, reduce, save
§ Actions can be applied to RDDs; actions force 

calculations and return values
3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 54



join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition

= RDD

map

¡ Supports general task graphs
¡ Pipelines functions where possible
¡ Cache-aware data reuse & locality
¡ Partitioning-aware to avoid shuffles
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¡ DataFrame:
§ Unlike an RDD, data organized into named columns, 

e.g. a table in a relational database.
§ Imposes a structure onto a distributed collection of 

data, allowing higher-level abstraction
¡ Dataset:

§ Extension of DataFrame API which provides type-safe, 
object-oriented programming interface (compile-time 
error detection)

Both built on Spark SQL engine. Both can be 
converted back to an RDD
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¡ Spark SQL

¡ Spark Streaming – stream processing of live 
datastreams

¡ MLlib – scalable machine learning
¡ GraphX – graph manipulation
§ extends Spark RDD with Graph abstraction: a 

directed multigraph with properties attached to 
each vertex and edge
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¡ Performance: Spark normally faster but with caveats
§ Spark can process data in-memory; Hadoop 

MapReduce persists back to the disk after a map or 
reduce action

§ Spark generally outperforms MapReduce, but it often 
needs lots of memory to perform well; if there are 
other resource-demanding services or can’t fit in 
memory, Spark degrades

§ MapReduce easily runs alongside other services with 
minor performance differences, & works well with the 
1-pass jobs it was designed for

¡ Ease of use: Spark is easier to program (higher-level 
APIs)

¡ Data processing: Spark is more general
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¡ Suppose we have a large web corpus
¡ Look at the metadata file
§ Lines of the form: (URL, size, date, …)

¡ For each host, find the total number of bytes
§ That is, the sum of the page sizes for all URLs from 

that particular host

¡ Other examples: 
§ Link analysis and graph processing
§ Machine Learning algorithms
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¡ Statistical machine translation:
§ Need to count number of times every 5-word 

sequence occurs in a large corpus of documents

¡ Very easy with MapReduce:
§ Map:

§ Extract (5-word sequence, count) from document

§ Reduce: 
§ Combine the counts
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¡ Compute the natural join R(A,B) ⋈ S(B,C)
¡ R and S are each stored in files
¡ Tuples are pairs (a,b) or (b,c)
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¡ Use a hash function h from B-values to 1...k
¡ A Map process turns:
§ Each input tuple R(a,b) into key-value pair (b,(a,R))
§ Each input tuple S(b,c) into (b,(c,S))

¡ Map processes send each key-value pair with 
key b to Reduce process h(b)
§ Hadoop does this automatically; just tell it what k is.

¡ Each Reduce process matches all the pairs 
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

3/30/20 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 64



¡ MapReduce is great for: 
§ Problems that require sequential data access
§ Large batch jobs (not interactive, real-time)

¡ MapReduce is inefficient for problems where 
random (or irregular) access to data required:
§ Graphs
§ Interdependent data 

§ Machine learning
§ Comparisons of many pairs of items
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¡ In MapReduce we quantify the cost of an 
algorithm using 

1. Communication cost = total I/O of all 
processes

2. Elapsed communication cost = max of I/O 
along any path

3. (Elapsed) computation cost analogous, but 
count only running time of processes

Note that here the big-O notation is not the most useful 
(adding more machines is always an option)
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Get course handout on website!

Recitation sessions:
¡ Spark Tutorial using Colab 0:

Thu, April 2, 1-3pm on Zoom
¡ Review of basic probability and proof 

techniques 
Tue, April 7, 3:30-5:30 PM, Zoom

¡ Review of linear algebra:
Thursday, April 9, 1-3 PM, Zoom
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