Milestone: The Love Story of Netflix and IMDB

Ishita Bhandari Ajinkya Sheth
Information School Information School
University of Washington University of Washington
Seattle, WA 98195 Seattle, WA 98195
ishitalO@uw.edu ajinkyaQuw.edu

Octavian-Vlad Murad
Paul G. Allen School of Computer Science & Engineering
University of Washington
Seattle, WA 98195

ovmurad@uw. edu

Abstract

In an age where there is simply too much information for humans to process
during their lifetimes, recommender systems have become an ubiquitous tool
designed to prevent information overload, increase customer satisfaction, and boost
businesses’ income and efficiency. One of the tasks traditionally associated with
recommender systems is that of offering movie suggestions tailored to the viewer’s
preferences. This task rose to fame in 2006 when Netflix posted a $1.000.000
reward for whoever writes the best movie recommendation algorithm. In 2009,
the winners of the challenge proposed a purely Collaborative Filtering solution.
However, since multiple sources of information about movies are available and
since the Machine Learning field has come a long way since 2009, we design
a hybrid recommender system based on deep neural networks which leverages
data from a complementary source of movie information. More specifically, we
propose a deep learning algorithm which combines a Content-Based Filtering part
learned from movie data available on IMDB with a Collaborative-Filtering part
that is learned from the Netflix Challenge data. By combining two complementary
sources of data and two complementary recommendation paradigms, as well as by
capitalizing on the awesome power of neural networks, we are able to outperform
the winning algorithm of Netflix Challenge by 2.7% in term of RMSE.

1 Introduction and Previous Work

Recommender Systems gather information about the users’ preferences for a set of items with the pur-
pose of recommending new ones. Modern RS generally combine various sources of information(e.g.
user behavior, tags, intrinsic characteristics of the items, ratings collected from the users) in order
to provide accurate, well-rounded, and novel recommendations. Collaborative Filtering methods
are a particularly successful and popular class of RS. This type of methods use the preferences of
like-minded users to make suggestions. Most often, CF methods rely on one of two principles. They
could use a similarity measure between users and/or items in order to suggest similar items to the
ones that the user rates highly or to suggest items rated highly by similar users. Alternatively, a
latent vector space can be learned in which the dimensions correspond to abstract concepts that
describe the users and the items and in which similar users and items are naturally grouped together.
However, pure CF methods suffer from the infamous cold-start problem[1]. The cold-start problem
refers to the inability of a CF algorithm to make reliable recommendations when it doesn’t have

Preprint. Under review.

enough available ratings for an item or when it encounters a new user. A common solution[1] for
this problem is creating a hybrid RS that has an additional Content-Based Filtering component. CBF
methods leverage item features in order to make recommendations using the principle that if a user
tends to rate items with certain features highly, then he is likely to enjoy other items with similar
features. Since they rely solely on features to make recommendations, CBF methods are immune to
the popularity of an item, thus partially alleviating the cold-start problem of CF methods when item
ratings are lacking. Furthermore, it can help the equivalent problem when we encounter a new user
by recommending items that fit the users’ predefined preferences which we can collect as part of a
sign up process or infer through the users’ demographics.

Learning embedding vectors in a deep learning framework has become a very popular machine
learning strategy, mainly due to their very successful usage in the Natural Language Processing
field[2]. However, in recent years, embedding vectors have also been used for prediction tasks using
categorical features[3], as well as for CF systems[4]. Intuitively, an embedding is a map from some
categorical entities to an Euclidean space. In the context of deep learning, this map represents a
matrix which associates a real valued row vector to each category and which is learned through
optimizing a neural network, in a supervised setting, with respect to an error function. Concretely, in
the case of CF for movies, the entities are users and movies which we aim to embed into a latent space
that would capture meaningful concepts such as genres, quality of acting, tone, etc. Although the
algorithm is agnostic to these concepts, we encourage it to learn useful representations by using the
latent vectors to predict how a user is going to rate a movie through a NN. Then, using the difference
between the prediction and the actual rating, we create an error signal which we back-propagate
through the NN and then use to update the embedding map. Once the embedding map and the NN
are trained, they can take as input movie-user pairs and output the rating prediction.

Auto-encoders are another machine learning algorithm enjoying recent success and popularity[5].
An auto-encoder is a neural network comprising of two parts: the encoder, £, which compresses
the input = from a large dimensional space to a much smaller one, and the decoding part, D, which
takes the compressed representation and maps it back to the original large space. The objective
of an auto-encoder is to reduce the reconstruction error || D(E(z)) — z|| over all datapoints. By
doing so, we ensure that the compressed representation F(z) learns to be as expressive as possible.
Auto-encoders have been used for CBF[4] by learning a compressed representation of item features
which, along with some similarity metric, was then utilized to cluster alike items. Our algorithm
relies on auto-encoders in two ways. Firstly, the IMDB data contains movie overviews which we first
transform to tf-idf features and then compress using an auto-encoder. Secondly, the CBF component
of our hybrid algorithm uses an auto-encoder inspired bottleneck architecture to compress the movie
representation into a expressive lower dimensional space.

Providing movie suggestions is one of the tasks traditionally associated with RS. The task gained
popularity in 2006 when Netflix posted a $1.000.000 reward for whoever is able to create the best
movie RS. The Netflix Challenge data contains approximately 110 million ratings given by 17,770
users to 480,189 movies dating from 1890 to 2005. The organizers evaluated the performance of
the submitted solutions by computing the RMSE achieved on a secret held-out set. The competition
would enter its final call stage(only one more month left to submit solutions) when a submission would
improve the RMSE of Cinematch, Netflix’s original RS system, by 10% or more. The Cinematch
algorithm achieves a RMSE of 0.9525 on the held-out set, so the final solutions would have to perform
better than a 0.8572 RMSE. On September 19th 2009, the BellKor’s Pragmatic Chaos team was
announced the winner of the competition having achieved an RMSE of 0.8567. Their solution[6]
is an ad hoc CF algorithm which reflects the team’s deep understanding of the task, but lacks in
generalizablity and simplicity.

However, we do not have access to the actual held-out dataset used by Netflix to evaluate the
submissions for the competition. Instead, we randomly select 5% of the Netflix Data that we will
not use for training as our test-bench for computing the RMSE that our models achieve. Despite
having less data, our hybrid recommendation system obtains an RMSE of 0.8335 which is a
2.7% improvement on the winners’ RMSE. Furthermore, we achieve this RMSE with minimal
hyperparameter tuning and computational power and conjecture that using our general framework
with more attention to detail and larger models could further improve the results.

The contributions of our paper are the following:

Figure 1: Distribution of fuzzy matching scores

Histogram of scores for fuzzy mapping

8000

Frequency
3
o
o

8
3

2000

e We present a simple, yet powerful hybrid RS for movie recommendations that requires
minimal feature engineering.

e As a byproduct of our design, we obtain useful compressed representations of the movies
and the users.

e We achieve a 2.7% improvement of RMSE when compared to the winners of the Netflix
challenge.

e We successfully combine two datasets containing complementary data, even though the
matches between the two datasets is far perfect. Furthermore, we present a method for
combining categorical and continuous features, a task which is notoriously difficult.

2 Data

For our project, we plan to utilize two datasets: The Netflix Prize Dataset[7] and The Movies
Dataset[8]. The Netflix data contains approximately 110 million ratings given by 17,770 users to
480,189 movies dating from 1890 to 2005. The Movies Dataset comprises of movie descriptors such
as crew, plot keywords, budget, release date, etc., for 45,000 movies dated up to 2017. In order to
leverage the content based information, we need to map each Netflix movie to its corresponding entry
in the Movies Dataset.

Matching the databases is problematic due to the fact that the titles of the same movie can differ
between the two databases and that some movies in the Netflix Database might not be present in
the Movies Database. To partially handle these problems, we use the Python package fuzzywuzzy to
compute the Edit Distance between movie titles. Informally, the Edit Distance between two words
is the minimum number of single-character edits required to change one string into the other. We
join the two databases by matching on the entry with the highest score from the other database. The
distribution of the scores, which are on a scale from 0 to 100, is given in Figure 1. Because this is not
enough to ensure that the matches are correct and because in some cases such a match might not even
exist, we will further account for the uncertainty in the matches through the way we build our model,
as described in Section 3.

We have extracted movie CB features from the Movies Dataset, as well as some simple statistics from
the Netflix Dataset. These features are shown in Table 1.

All the numerical features have been standardized and thus are floats. All the categorical features are
converted to integer ids or list of ids if the features are sets(such as genres or keywords). Although
we converted all numerical values to floats, we selected some of them to also be converted to discrete
variables through histogram binning. For each such variable we used 20 bins and computed the
bin sizes in a way that makes the bin frequency as even as possible. We choose to do this for two
reasons. First of all, some numerical values such as revenue and income follow power laws and are
thus unsuitable for standardization which works well only for normally distributed features. We offer
an example in Figure 2. Second of all, certain features such as the release year or the popularity of a

I Feature Name Type Range |
release_year_bin int [0, 19]
budget_bin int [0, 19]
revenue_bin int [0, 19]
runtime_bin int [0, 19]
popularity_bin int [0, 19]
language int [0, 62]
director int [0, 6887]
writer set of 4 ints [0, 3870]
producer int [0, 4569]
actors int [0, 4411]
genres set of int [0, 20]
keywords set of int [0, 13076]
release_year float normalized float
budget float normalized float
revenue float normalized float
runtime float normalized float
vote_average_movies float normalized float
vote_count_movies float normalized float
ratings_average_movies float normalized float
ratings_std_movies float normalized float
vote_average_netflix float normalized float
vote_count_netflix float normalized float
vote_std_netflix float normalized float
match_score float normalized float

Table 1: Feature extracted from the Movies Databases

Figure 2: Example of the revenue feature before and after binning.

Histogram of revenue

Frequency

10°

00 05 10 15 20
Revenue

25

le9

Frequency

250

2
=}

o
o

100

Histogram of Revenue Bins

1 2 34 5 67 8 91011121314151617 1819
Revenue Bins

movie should be considered on a coarser scale than their original values. For example, by binning
the release year we ignore small differences in this feature which are probably irrelevant for our
prediction task. Instead, we consider longer intervals of time which makes sense in this case since a
user might have stronger preferences when it comes to movies from different decades.

In addition to the features presented in Table 1, we also extracted from the Movies Database the
overview of each movie. This feature is a paragraph of text representing a short description of the
movie. We transform each overview into tf-idf features which we will further process as described in

Section 3.

Our features are largely divided into four main categories:

1. Human Features: actors, directors, and other people of importance involved in the movie.
Most users prefer certain actors and directors more than others, while some directors and
writers tend to produce better movies. Thus, we hypothesize that adding such information to

our model will add to the quality of our predictions. We restrict our attention to the most
important 4 actors of the movie in order keep their total number small while ensuring that
they are relevant to the user’s preferences.

2. Descriptive Features: genres, keywords, overview. Most users have a specific preference
towards certain genres. Furthermore, keywords and plot descriptions could play an important
role in determining the kind of scripts that a user tends to rate higher or lower.

3. Global Evaluation Features: mean ratings, standard deviation, popularity index. Mean
ratings of movies from both the Netflix data and the Movies database gives a baseline of how
well a movie was received by the audience on average. This in it of itself is an important
feature when trying to predict how a user is going to rate a movie, but it can also be used
in making suggestions to some quirky users how might actually enjoy watching horrible
movies.

4. Commercial and Temporal Features: runtime length, revenue, budget, release date. Fea-
tures such as the budget and revenue describe the commercial aspect of movies, while the
release date and runtimelength capture temporal characteristics. A movie with a greater
budget may be marketed better and a movie with a specific release date may cater to certain
audiences more. Regardless, these features impact the overall perception of the movies and
influence how they are received by the users.

While we have extracted most of these raw features, a major challenge we foresee is transforming this
array of categorical and continuous variables into the feature vectors m; and u; we described in the
Algorithm Section. The main problems are transforming categorical features into values or vectors in
R™, and ensuring that some features don’t have more impact on the outcome than others(for example,
if we derive TF-IDF features from the movie description, then these would be large vectors in R",
while the budget is going to be represented by a single value in R).

As a starting point in deriving movie feature vectors, we plan to standardize numerical variables
such as budget, runtime, revenue, popularity, etc, in order to bring them on the same scale. For
certain categorical features such as actors or directors we could do the following: if actor A has
acted in movies M1, M2 and M3, then assign the average rating of movies M1, M2 and M3 to that
actor. These kind of features would again be standardized. An alternative solution would be to
use embedding layers for all categorical features which we would train in a similar manner to the
method described in the Algorithm Section for learning movie and user embeddings. For the movie
descriptions, we will use TF-IDF features. All these features will be gathered into a vector m; in R™
which will describe the content of a movie.

3 Algorithm

The algorithm we propose is a deep learning based hybrid RS comprising of a CBF and a CF part. We
successfully combine the awesome power of recent advancements in deep learning such as embedding
layers and auto-encoders into a RS that leverages and combines content data extracted from the
Movies Database and collaborative data gathered from the Netflix Database. This system would
be used to predict the rating that a Netflix user will assign to an unseen movie. Additionally, the
compact intermediate representations used by the deep learning model could potentially be utilized
as a Euclidean space where movies and users with similar properties are clustered together.

As described in the Data Section, one of the biggest challenges we faced was merging the Movies
Database with the Netflix Database, given that movie titles between the two databases might not match
or that a movie in the Netflix Database might not be present in the Movies Database. Furthermore, the
content data from the Movies Database comprises of both categorical and numerical features, making
it challenging to model the two types of data in a common space. Thus, we begin by presenting
two models which we used to integrate the content data from the Movies Database in a matter that
tackles the aforementioned problems. Finally, once we obtain the content data through the first two
models, we plug it into the hybrid recommender system which we will describe at the end of the
section. Here we discuss the algorithms at a general level, while the implementation details are given
in Implementation section.

Figure 3: Auto-encoder used to reduce the dimensionality of tfidf features

To fix some notation, we will use: 7 to index movies, j to index users, U the number of users, M the
number of movies, 7;; to denote the real rating given to movie 7 by user j, 75; to denote the predicted
rating given to movie ¢ by user j, and x|y to denote the concatenation of the vectors x and y.

A substantial amount of information about the content of the movie is present in the movie’s overview
which is a short text describing what the movie is about. In order to integrate this information, we
first transform the overview into tf-idf vectors which end up being vectors of size 815. Using vectors
of this size would be too computationally expensive and it would drown out the signal coming from
all the other movie features which have much lower dimensionality. Hence, we train auto-encoder
to reduce the dimensionality of the tf-idf features to 32. More specifically, if we denote o; to be the
tf-idf features of the overview of movie 4, our objective is to train an encoder-decoder pair (E, D)
which minimizes the reconstruction error > || D(E(0;)) — 0i, where E : R85 — R32 and
D : R3? — R3 are deep neural networks. Once the training is completed, we take E(o0;) € R32
as the representation of the overview and will denote it by E, (7). The auto-encoder architecture is
presented in Figure 3.

The next step is the integration of the categorical features we gathered or derived from the Movies
Database as described in the Data Section. We achieve this by learning embedding maps for each of
the categorical features. Namely, for each categorical feature f, which can take on discrete values
{1,..., F}, we aim to train an embedding map G : {1,..., F'} — RN7, where Ny is the size of the
embedding for feature f. More concretely, G ¢ is an F' X Ny matrix where eachrow k € {1,..., F'}
corresponds to the embedding of value k taken by feature f into its respective Euclidean space.
Our categorical features, the number of discrete values they can take and the embedding sizes we
picked are displayed in Table 2. We also add one additional feature, movie_vec, which learns one
embedding for each movie in the database. The purpose of this feature is to account for other movie
characteristics that we do not model directly, thus making our representation more flexible. We chose
the embedding sizes in such a way that they reflect our intuition of how much each feature has a
relative influence on the preferences of an user. That is, the larger the embedding size, the more
importance we believe a feature has on the user’s preference. For each movie i, the actors, genres,
and keywords features are lists of integer values(size 4 for the actors, variable size for all the others),
while all the other features are integer values. For the former features taking on value [k1, .. ., kp] for
movie i, we compute the embedding as E(f(i)) = >_%_, G, where Gy, is the k;’th row of the
embedding matrix of feature f. For the latter features taking on value k£ for movie ¢, we compute
the embedding as E/(f(i)) = G . Finally, we concatenate these embeddings to obtain what we will
refer to as the categorical movie embedding for movie i, E (i) = E(f1(2))|E(f2(2))| ... |E(fe(7)),
where ¢ is the number of the categorical features, and E.(i) € R%.

As shown in [3], we can encourage the embedding matrices to learn useful mappings by further
plugging the embeddings into a neural network which we then train to optimize some desired objective.
Since we want to predict how a Netflix user j is going to rate a Netflix movie 7, we devise a CF
network that will collaboratively learn the embedding mappings for each of the categorical features
by also learning an embedding for each user j and by fusing the user and movie embeddings through
a neural network whose task is to predict the rating r;;. More specifically, we have a user embedding
matrix Gy, : {1,...,U} — RN+, where U = 480189 and N, = 192. We call the embedding of
each user u using this matrix the user embedding and denote it by E,,(j) = G, where G, is the
j’th row of G,,. The categorical movie embedding and the user embedding are concatenated into
one vector E;; = E.(i)|Ey(j). We fuse the concatenated vector by training a neural network, which
we will call the categorical collaborative filtering network and denote by Ncc r, whose objective to
make predictions 77; as close as possible to the real r;;. More specifically, we aim to jointly learn, by
gradient descent, the categorical feature embedding matrices Gy for all categorical features, the user

| Categorical Feature Num Discrete Values(F) Embedding Size(Ny) ||
release_year_bin 20 2
budget_bin 20 2
revenue_bin 20 2
runtime_bin 20 2
popularity_bin 20 2
language 63 2
director 6888 12
writer 3871 8
producer 4570 4
actors 24412 16
genres 21 4
keywords 13077 10
movie_vec 17770 30

Table 2: Categorical features, the number of discrete values they can take, and the embedding sizes

Figure 4: A graph of our estimation of the probability that two titles match given that their matching
score is in an interval. The mean of the bins is given on the x axis

10 A

o o o
e o @
" n n

Avg. Score Accuracy

o
N

0.0

T T T T T T T T T
525 585 645 705 765 85 85 M5 B9
Mean of Score Intervals

T
465

embedding matrix G, and the model N¢cr which minimize the error

> I —rili3s

(4,3,7i5)

where NCCF(E”‘) = T‘Aij

where (i, j, r;;) ranges over all (movie, user, rating) training pairs from the Netflix Dataset.

However, as we discussed in the Data Section, we have a great deal of uncertainty regarding how well
Netflix movies were matched with movies from the Movies Database. Since the network described
above takes as input a Netflix movie ¢, but uses the features f(¢) computed in the Movie Database, we
have to account for how well the movie was matched across the two databases. When we performed
the matching, we computed for each movie ¢ a score s; € [0,100] which quantifies the quality of
matching the movie titles between the two databases. We heuristically compute the probability of a
match being correct given a score within a certain range by randomly selecting 20 movies that had a
score in that range and deciding whether the match is correct or not. We plot the histogram we obtained
through this process in Figure 4 and use the function w(s;) = exp(—5.0% (1.0 — (s; — 44.0)/56.0)))
to approximate the probability as a function of the score.

We will use w(s;) as the weight we place on the categorical movie embedding E.(i). We create
a second movie embedding, which we will call the auxiliary movie embedding and denote by
E, (i) € RS, with the purpose of learning a separate embedding for the cases in which the matches
are unreliable. Namely, we will replace E;; defined above, with E;; = Eq,4(4)|Ey(j), where
Eovg = Ec(i) * w(s;) + Eq(i)(1 — w(s;)). This means that w(s;) acts as a gate which decides
when we train the categorical feature embeddings or not, depending on the quality of the match for
. We train this adjusted network using the error function above, and for each movie we will store

Figure 5: The network used for computing the average categorical movie embeddings, Fy.4 (1),
displayed in purple

User Embd.

Mowe Embd.

Awg, Emba
Outpst €
s

Categorical Emba.

283

Categorical Collstoratve
Fitening Networc

3

the average categorical movie embedding, E,,q (1), as the representation of the i-th movie’s content
based categorical features. The architecture we just described is presented in Figure 5.

It is now time to bring it all together and introduce our hybrid recommender system. We begin with
the CBF part of our model. The input to this component will be the movie representations we learned
above, namely E, () and Eq,4(7), plus the numerical features which we extracted from the Movies
and Netflix Databases described in the Data section, which we will denote by E,,(i) € R'2. The
concatenation of these vectors are plugged into a bottleneck neural network which we will call the
content based network and will denote by N¢p : R0 _ RIS The output of this network is the
content based movie embedding which we denote by E,, (i) = No(Eo(i)|Eqvg(i)|En(i)). While
we could have trained this network in an auto-encoder fashion, independently from the CF component,
we decided to use what would correspond to the encoder part and use the code, E,, (i), as the input
to the CF part of our model, thus being able to simultaneously and co-dependently train the two
components. To perform collaborative filtering we use exactly the same architecture we described
above, but retrain GG,,, the user embedding, and rename the fussing network to the collaborative
filtering nerwork which we denote by N¢ . More specifically, we aim to jointly learn, by gradient
descent, the models Ncp and N which minimize the error

Y lrig=rijl3, where Nop(En()|Eu(j)) =13 and Em(i) = Nob(Eo(i)| Bavg (1) En(i))
(3,4,7i5)
where (i, j, r;;) ranges over all (movie, user, rating) training pairs from the Netflix Dataset.

This concludes our discussion of the model. For implementation details and results, consult Section
4.

4 Implementation Details and Results

We implemented all the models in TensorFlow and trained the models using only an i7 CPU.
The tfidf autoencoder is a deep neural network architecture with fully connected layers of sizes
[815, 360, 36, 360, 815] and ReLU activation functions. We found L1 activation regularization of
size 0.1 and L2 weight regularization of size 0.0005 to aid the learning process. We used Adagrad
with an initial learning rate of 0.05 and trained until convergence. The embedding layer sizes have
been described in Section 3. The categorical collaborative filtering network, Nccr, as well as the
collaborative filtering network in the final hybrid system, N are deep neural networks with fully
connected layers of sizes [160, 80] and ReLU activation functions. The final fully connected layer
produces the predicted rating through a scaled and shifted sigmoid function which produces an output

Figure 6: The final hybrid network

Emba

between 0.5 and 5.5 which is then clipped to the interval [1, 5]. Since the Netflix ratings can have
values {1,2,3, 4,5}, it would make sense to have our output produce continuous values between 1
and 5. However, since a sigmoid function approaches its limits asymptotically at infinity, we chose to
select 0.5 and 5.5 as our bounds in order to have the values 1 and 5 be achievable. Finally, the content
based network, N¢ g is a deep neural network with fully connected layers of sizes [128, 96] and tanh
activation functions. The reason why we used tanh activations is because the user embeddings have
values on both sides of 0, so it makes sense for the content based movie embedding to do the same.
We train both models using Adagrad with an initial step size of 0.05 and short stop the training when
test error starts going up. We experimented with dropout as a form of regularization, but did not find
it useful. Other forms of regularization were too computationally expensive for training on a small
CPU.

Before describing our results we note that we kept our models small in order to have them trained
using the limited computational power and time at our disposal. Furthermore, we did minimal
hyper-parameter tuning which goes to show the robustness of our method. However, we conjecture
that more powerful models with more careful hyperparameter tuning are likely to achive much better
results.

In addition to the Netflix challenge winning algorithm, we also compare our results with a purely
collaborative network that we implemented. This network follows a simple structure, similar to the
one used in our hybrid network, but is instead learning a movie embedding which is agnostic to the
CB data that we extracted from the Movies Database. In order to prove the power of the CB data we
extracted from the Movies Database, we make this model much larger and use movie embeddings
of size 150(compared to size 96 in our hybrid network) and user embeddings of size 300(compared
to 188 in our hybrid network). The RMSE attained by our two models both beat the RMSE of the
Netflix challenge winning algorithm, by some margin, but the hybrid network performs much better
than the larger purely collaborative model. The RMSE is computed on the test bed described at the
end of the introduction section.

| Model RMSE Percent Improvement to Netflix Winner ||
Netflix Winner 0.8567 0%
Purely CF Net 0.8409 1.84%
Hybrid Net 0.8335 2.7%

Table 3: Categorical features, the number of discrete values they can take, and the embedding sizes

5 Conclusion and Future Work

In conclusion, our work presented a simple, general, and powerful hybrid RS for movie recommenda-
tions which uses expressive yet compact intermediate representations of the movies and the users.
We show how to combine and leverage two movie datasets containing complementary data, even in
the presence of imperfect matches between the two datasets. Furthermore, we present a method for

combining categorical and continuous features, a task which is notoriously difficult. We do this by
learning useful embeddings for the categorical features by directly optimizing the task at hand. As
noted before, our algorithm can be further improved by better hyperparameter tuning, larger models,
better regularization, and a more structured approach to selecting the embedding or bin sizes.

6 Contributions

e Ishita Bhandari: Performed data cleaning, merged the two datasets, and created tf-idf vectors,
minor contributions to report and plots, poster.

e Ajinkya Sheth: Data preprocessing and feature engineering(standardizing, binning, etc.),
minor contributions to report and plots, poster.

e Octavian-Vlad Murad: Writing up the report, creating, coding, and testing the algorithm,
poster.

References

[1] Bobadilla, J. , Ortega, F. , Hernando, A. & Gutiérrez, A. (2013) Recommender systems survey. Knowledge-
Based Systems 46: 109-132

[2] Mikolov, T. , Sutskever, 1., Chen, K. , Corrado, G. & Dean, J. (2013) Distributed Representations of Words
and Phrases and their Compositionality.

[3] Guo, C. & Berkhahn, F. (2016) Entity Embeddings of Categorical Variables.

[4] Zhang, S. , Yao, L., Sun, A., & Tay, Y. (2018) Deep Learning based Recommender System: A Survey and
New Perspectives.

[5] Kingma, D. & Welling, M. (2013) Auto-Encoding Variational Bayes.

[6] Koren, Y. (2009) The BellKor Solution to the Netflix Grand Prize

[7] The Netflix Prize Data. Retrieved from: https://www.kaggle.com/netflix-inc/netflix-prize-data

[8] Banik, R. The Movies Dataset. Retrieved from: https://www.kaggle.com/rounakbanik/the-movies-
datasetratings.csv

10

