

OVERLAPPING COMMUNITY DETECTION VIA EDGE-SPACE REPRESENTATION

Yikun Zhang, Fengjie Chen, and Ruojin He Department of Statistics, University of Washington

PROBLEM

Detecting overlapping communities in real-world networks has proved to be a challenging task. The Link Clustering (LC) method proposed by Ahn et al.[1] deals with this problem by clustering the edges in a network into communities and deriving the corresponding node communities from edge clusters. However, the edge similarity metric used in the original LC only considers a narrow scope of networks.

Our main goal is to ameliorate the edge similarity metric in LC so that information in a broader neighborhood of an edge pair can be explored and incorporated.

DATA DESCRIPTION

Network	Nodes	Edges	С		CM
Amazon	334863	925872	75149	30.22	6.78
DBLP	317080	1049865	13477	53.40	2.27

C: number of communities, ACS: average community size, CM: community memberships per node.

- Amazon product co-purchasing network: *Nodes*: products; *Edges*: co-purchased product connections; *Communities*: product categories.
- DBLP collaboration network: Nodes: Authors; Edges: paper co-authorships; Communities: publication venues.

METHOD

Edge2vec Similarity Metric:

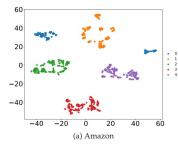
Let G=(V,E) be a given network and $f:V\to\mathbb{R}$ be the mapping function from nodes to node-space feature representions. The edge2vec representation for $e_{ij}\in E$ is defined to be

$$vec(e_{ij}) = f(i) \circ f(j),$$

where \circ is a binary operator (e.g., arithmetic mean). Then the edge2vec similarity metric between pair of adjacent edges e_{ik},e_{jk} can be computed as

$$S(e_{ik}, e_{jk}) = \frac{vec(e_{ik})^T vec(e_{jk})}{||vec(e_{ik})||_2 \cdot ||vec(e_{jk})||_2},$$

and $S(e_{ij}, e_{kh}) = 0$ if two edges e_{ij}, e_{kh} share no common nodes.



Evaluation Metrics: Let C^* be a set of ground-truth communities and \hat{C} be a set of detected communities.

• Average F1 Score:[2]

$$\frac{1}{2} \left[\frac{1}{|C^*|} \sum_{C_i \in C^*} F1(C_i, \hat{C}_{g(i)}) + \frac{1}{|\hat{C}|} \sum_{\hat{C}_i \in \hat{C}} F1(C_{g'(i)}, \hat{C}_i) \right]$$

where g and g' are the best-matching defined as $g(i) = \arg\max_i F1(C_i, \hat{C}_j), \ g'(i) = \arg\max_i F1(C_j, \hat{C}_i).$

• Omega Index: $\frac{1}{|V|^2}\sum_{u,v\in V}\mathbf{1}\{|C_{uv}|=|\hat{C}_{uv}|\}$, where C_{uv} and \hat{C}_{uv} are the sets of common ground-truth and detected communities for $u,v\in V$, respectively.

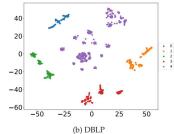
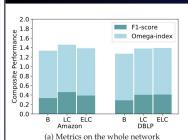


Figure 1: Visualizations of edge2vec representations on Amazon and DBLP Networks via t-SNE

RESULTS



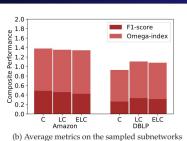


Figure 1: Composite Performances of Methods on Amazon and DBLP Network. B: BIGCLAM[2]; LC: Link Clustering; ELC: edge2vec Link Clustering; C: Clique percolation method (CPM).

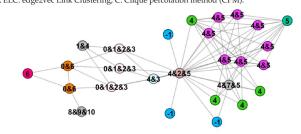


Figure 2: Partial Detected Communities via our edge2vec LC Method on the Amazon Network

CONCLUSION AND FUTURE WORK

Conclusion: We propose a new framework that transforms task-independent feature learning for nodes into edge-space representations and apply it to overlapping community detection. The *edge2vec* Link Clustering method

- preserves the community structure in the original network after transformations
- is comparable to other state-of-the-art algorithms
- is scalable to large networks with millions of nodes and edges.

Future Work: The sementics of edges (*e.g.*, biomedical information) can be considered during *edge2vec* feature representation learning.

REFERENCES

[1] Y.-Y. Ahn, J. Bagrow, and S. Lehmann (2010). Link Communities Reveal Multiscale Complexity in Networks. Nature, 466(7307): 761-764.
[2] J. Yang and J. Leskovec (2015). Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach. In WSDM'13, pages 587-596. ACM.