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Background: treating patients with Glioblastoma

Glioblastoma (GBM) is the most common and most aggressive primary brain tumor. Patients
with this disease live on average only 12-15 months, however there exists a subgroup of ex-
tremely short-term survivors who usually live less than 6 months. These short-term survival
patients are critical to identify so they can be treated with experimental therapies right away.

Recent work has shown that the genomes in the short-survivor tumors exhibit extreme
changes in their DNA code but it requires dangerous and costly brain surgery to get a tu-
mor sample to confirm. Instead, we aim to use non-invasive magnetic resonance (MR) scans
to predict these extreme genomic changes in tumors using computer vision techniques.
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Figure 1: Overview of glioblastoma patient treatment decision flow.

Problem Statement

To better recommend appropriate treatment plans to GBM patients while avoiding dangerous
surgery options, we aim to use computer vision techniques to train a model to predict the
presence of extreme genomic changes in tumors from non-invasive MR image scans.

Primary dataset: GBM MR Scans
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Image feature generation

Groups of features are generated combinatorially by choosing: 1) a modality (e.g., FLAIR), 2)
a tumor compartment (e.g., edema), 3) an image transformation method (e.g., LBP), and then
applying a number of feature extraction methods (e.g., GLCM) to get numerical features. All
combinations result in about 30,000 features per patient.
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Computational Methods Overview

* Extract 30,000 image features from each patient

¢ Group features by MR modality, tumor compartment, and feature extraction method

* Use lasso to select 50 groups of features and use PCA to project each group to two dimen-
sions, resulting in 100 features

¢ Use selected features found in the larger dataset as features for the smaller GBM dataset

¢ Train ML models with transferred features; record accuracy; use SHAP to extract inter-

pretable explanations of final predictions
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Trends in lasso selected features

¢ A: Tlce-based features are most important for tumor grade classification and T2-based fea-
tures are important for survival prediction

¢ B: The enhancing tumor compartment is most important for tumor grade classification and
nearly irrelevant to resection prediction

* C: Features from the necrotic tissue compartment on the FLAIR modality are most impor-
tant for resection prediction, but inconsequential for survival prediction
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BraTS and TCIA Classification Accuracy

Our method (1*) outperforms vanilla ML models applied to the entire dataset

Table 1: BraTS Experimental Results (Accuracy)

Task Method lasso SVM  MLP XGBoost DT RF LR

Survival 1* 0.700  0.700  0.675 0.681 0.626  0.650 .
0.650  0.589  0.540 0.577 0.571  0.583  0.589
3 0.681 0736  0.687 0.656 0.564 0.607 0.736
4 0.663 0613  0.601 0.620 0.577  0.564
All Features  0.607  0.632  0.650 0.620 0.583  0.546
Resection 1* 0.843  0.855 0.795 0.759 0.711  0.723
2 s = 5 < 2 =

4 2 = = o x
All Features 0711 0.687 0.711 0.687
Tumor Grade £53 09260930 0944 0.891
2 0923 0.923 0.930 0.853
3 0 930 0919  0.895 0.919 0.884
4 0910 0919 0.905 0.940 0.891
All Features  0.919  0.905  0.909 0.930 0.877

Table 2: TCIA Experimental Results (Accuracy)

Task Training Features lasso  SVM MLP XGBoost DT RF LR

Copy-Number  Survival Features 0696 0.783  0.739 N7 0.652
Resection Features 0717  0.804 0.783 . 0761 0.761 0.804
Tumor Grade Features  0.913  0.804  0.587 .4 0.761 0.804
All Features 0.761  0.761  0.587 5 0.761
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Model Interpretability with SHAP

SHapley Additive exPlanation (SHAP) quantifies the contribution of each input group of fea-
tures in machine learning model predictions with SHAP values.

* Running SHAP on various models for the TCIA classification tasks identifies groups of
features that are important for prediction

* Groups of features with the top SHAP scores are consistent across models, but not when
using different sets of input features
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Top SHAP feature groups common to all 3 models
Group 0: t1ce, wt, glcm
Group 5: shape
Group 9: t1ce, wt, glrim

Group 2: t2, core, ngtdm
Group 11: t2, edema, first order

Group 1: t1, nec, ngtdm
Group 5: tice, enh, gldm
Group 6: {2, nec, glszm
Group 35: t2, wt, ngtdm

Conclusions

* Our grouped feature selection method outperforms vanilla machine learning models with-
out compromising interpretability

o Transferring selected features from tasks on the BraTS dataset to the smaller TCIA drasti-
cally improves performance on the TCIA dataset far beyond human proficiency

¢ Our feature selection results confirm prior domain knowledge and suggest new conjectures
about the role of the necrotic area on the FLAIR modality in neurosurgery




