Auditing a Feral Recommendation System

CSE 547 - Spring 2019 Johan Michalove and Matthew Rockett

Motivation

- Social effects of recommendation systems (RSs) are not well understood
- · Recommendation systems are usually optimized for engagement using "traditional" metrics such as:
 - Viewing time
 - Click Through Rate
 - Mean Squared Error
- · Improving an RS with respect to traditional metrics can lead to formation of "filter bubbles" and "echo chambers" by the RS pigeonholing users into specific clusters of content.
- RQ: Can we empower users and third parties to explore ways of auditing recommendation systems that holds the RS accountable as an actor in a social

Controversy Score:

 $C(v) = \frac{l_v + d_v}{\max(1,|l_v - d_v|)}$

Popularity:

- Number of views
- Recommendation Prevalence: In-degree of item v in RN

Recommendation Diversity

Assortativity Coefficient A mixing matrix for a node attribute e, where e_{ij} is the prop has value i and v has value j out of the total number of edges, is defined:

 $r = \frac{\text{Tr}(\mathbf{e}) - \|\mathbf{e}^2\|}{1 - \|\mathbf{e}^2\|}$

Random: picks an arbitrary video in the from the first 20 recommendations

Hybrid Human-Al Recommendation Systems

. Field of Machine Behavior aims to regard algorithms within the framework of sociotechnical, or "hybrid" systems

• "Feral" recommendation system: an actor in a complex social milieu that is governed by opaque metrics which do not model the interests of the users beyond engagement-centered objectives.

Key insight: lack of sociality. Can a RS be your friend?

Recommendation Networks: an analysis framework

The Recommendation Network (RN) is a representation of a set of recommendations made by the RS under test.

Problem Formulation: RN and Random Walk

A RN is defined as a directed graph G=(V,E) with no self-loops, where $v\in V$ is a video with associated metadata (likes, dislikes, views, etc.), and a directed edge $(u,v)\in E$ is a recorded instance of video u recommending video v.

We define a random walk as an ordered list of nodes $v_1, v_2, v_3, ..., v_k$, where v_1 is a root video and v_k is a leaf node. The transition function from one node to another Next(v) is at the heart of ou analysis. We look at a multitude of transition functions, highing on the ordering of recommendations

Allows for the use of complex network analysis to understand dynamics of RS

Random walker model is a simplified **user interaction** model to study effects of browsing patterns on recommendations.

Metrics

Content Diversity:

- Category: attribute provided by YouTube Eg. "Science & Technology", "Entertainment"
- Topic Modeling: TF-IDF and NMF topics
- Eg. "Avengers", "Late Night TV", "Amazing

Attributes used to compute $P(a_v = a_u)$ where a_v and a_u are attributes of videos v and u. Sim(v,u) used to determin

 $S(v) = \frac{|\{(v,u) \in E \, | \, Sim(v,u) = 1\}|}{|\{(v,u) \in E\}|}$

Sim methods: "Category", "Topic 1", "Topic 3"

Walk Strategies:

Top-K: picks a video from the first k ranked recommendations (k = 1 ... 6)

Results: An introduction

Key insights:

- Incertainty collapses as the user reaches a lower depth.
- On average the RS does not suggest controversial videos, or, videos which are recommended are not controversial.
- The RS steers users towards highly viewed videos first, before leading them to less popular content.

Key Results

- Top-3 surfer trends:
 - o Top-2 and Top-3 walkers, progressively lead to more controversial content*
 - o Top-2 walker at shallower depths lead to on average higher viewed videos, while Top-3 leads to less viewed videos
 - o Top-2 walker has a much higher prevalence in our surf graph, the RS proposed as a recommendation more often.
 - o While the Top-2 and Top-3 surfer consistently get recommended content of the same category, the Top-3 surfer sees more diverse "topics".

Why? Third video plays a special role for recs -- familiar vs. novel

PAUL G. ALLEN SCHOOL

Data Collection

- We analyze **YouTube** as it is a very popular industrial recommendation system, and has been under intense scrutiny for it's possible negative effects recently.
- Surf graph: depth first search for a subject (consisting of 10 search terms). Graph is created by taking top 6 videos from a search query and exhaustively DFS to
- We selected 19 subjects, for a total of 190 surf graphs.
- In total collected data on 5,064,291 videos, capturing 12,884,067 recommendations on YouTube

Diversity: Assortative Mixing

Assortative Mixing Matrix describes recommendation frequency between item attributes.

Subject	Global	2020 President	Abduction	Abortion	Avengers	Bikini	Climate Change	Flat Earth	Ford Truck	Hiking
Category	0.50	0.46	0.41	0.40	0.40	0.48	0.42	0.41	0.51	0.38
Topic 1	0.34	0.31	0.32	0.28	0.45	0.34	0.29	0.30	0.30	0.31
Topic 3	0.62	0.60	0.59	0.58	0.67	0.61	0.58	0.59	0.59	0.59
Subject	History of War	Homeless	Reptiles	SpaceX	Sports	Tesla	Unboxing	Unemployment	Us Movie	Volcas
Category	0.44	0.47	0.48	8.29	0.62	0.47	0.58	0.41	0.40	0.46
Topic 1	0.28	0.34	0.47	0.29	0.41	0.32	0.36	6.25	0.33	0.33
Topic 3	0.57	0.61	0.68	0.57	0.65	0.60	0.63	0.55	0.62	0.61

Conclusions and Takeaways

- Conclusions: Large scale algorithmic auditing tools are one of several frameworks for effective scrutiny of large industrial RSs.
- Need for third party audits which go beyond critiques of individual cases of content moderation failure, anecdotal evidence, or other first-order observation.
- Limitations: Use more directed subject selection to understand
- - o Incorporate real **user data** for creating walk strategies, and running them **on** the platform
 - o Open source so other interested third parties and researchers can leverage our tool.