ABSTRACT

Particulate Matter (PM) analysis is important in assessing an
individual's exposure to potentially harmful particles.
Currently, PM is recorded at sparse locations in a
geographical area, however, the PM level can vary
dramatically over small distances.

We map and predict PM levels at specific locations in the city
of Krakow in Poland from spatio-temporal data of PM levels
and meteorological data.

G

Figure 1. In the year 2016, ambient air pollution was
responsible for 4.2 million deaths

We have two kinds of data in the dataset for each sensor:
1) Meteorological data: temperature, humidity and
barometric pressure.

2) Air quality data: PM2.5, PM10 and PM1.
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Figure 2. Overall distribution of sensors and average
normalized pollution at sensor locations for 10 months in
2017
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Figure 3. The relative position for test data with
respective to all other training sensors
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MODELS / ALGORITHMS

Bellkor reccommendation system
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Algorithm 1: Stochastic Gradient Descent Latent Factor Model
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Table 1: R? measurement for all test sensors

201 173 196 222 228
0915 0912 0906 0822 0.778

Semi-supervised Classification using
L,-regularized Logistic Regression
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Algorithm 2: Semi-supervised Logistic Regression T e e T s
Inputs: Training dataset D = D; U Dy, where D; consists of labeled samples and D, contains T .
unlabeled samples Srzoskuania C
Initial Estimates: Build initial classifier (Ly-regularized Logistic Regression + MLE) from the
labeled training samples, . Estimate initial parameter  using MLE.
while log likelihood increases do
E-step: Use current classifier to estimate the class membership of each unlabeled sample, that is, asiow ) — G o
the class with maximum probability that the sample belongs to that particular class (see (3 e Co, . . ke
M-step: Re-estimate the parameter, &, given the estimated label of each unlabeled sample (see . Kakotow
@) .
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end
Output: An MLE classifier that takes the given sample (feature vector) and predicts a label.

Data-Driven Discovery of Partial Differential
Equations (PDE)

Algorithm 3: STRidge(©, Uy, A, tol, iters) Prediction Based on Radial Basis Function Interpolation

£ = argming|©€ — ULJ|3 + Al|€]13 # ridge regression
bigeoeffs = {j : [ > tol} # select large coefficients
£[ ~ bigeoeffs] = 0 # apply hard threshold
£[bigeoefls] = STRidge(O[:, bigeoeffs], U, tol, iters — 1)
# recursive call with fewer coefficients

return &
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Figure 5. Comparison of latent factor model results (red) vs

SEMI-SUPERVISED LOGISTIC REGRESSION RESULTS
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BELLKOR RECOMMENDATION RESULTS

Figure 6. Accuracy considering year vs month data.
This model can measure the overall trend with R?=0.928.
The model does not perform well for current time trend (best
R?=0.484).
The model is not suitable for prediction due to low accuracy
which might be due to missing features in data.

‘Table 2: Prediction accuracy using O/1 loss for semi-supervised classification

0th Hour 2nd Hour_3rd Hour _4th Hour
575%  547% _ 511%

69.4%

It Hour

T -regularized Logistic Regression 61.4%

Month (2017) Month (2017)

Figure 4. Pollution data over 10 months for 6 sensors. The
pollution levels are higher in the fall and winter months.

+ We classify PM concentrations into 6 classes using semi
supervised L,-regularized logistic regression. The model has
69.4% mapping accuracy and 61.5 % - 51.7 % prediction
accuracy for 1 -4 hrs.
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Figure 7. PM2.5 concentration labels for 7th March 6:00 AM at all 29 sensor locations (left) and PM2.5 concentrations mapped
by semi-supervised L ,-regularized logistic regression model.

DATA DRIVEN DISCOVERY OF PDE

Training data Matrix
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Example  for eal valued function i one spatial dimension

Partial Differential Equation Generated By Algorithm 3

U = -1.47Uy + 2.2Uyy + 0.13U + 0.03hU,,

FUTURE WORK
+ Generating an algorithm that can accurately calculate the
derivative of the interpolated data for data driven discovery of
PDE.

trend using Bellkor * Improving feature selection using different algorithms in

semi-supervised classification.
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