
CSE 547: Machine Learning for Big Data Spring 2020

Problem Set 3
Please read the homework submission policies.

Assignment Submission All students should submit their assignments electronically via
GradeScope. No handwritten work will be accepted. Math formulas must be typeset using
LATEX or other word processing software that supports mathematical symbols (E.g. Google
Docs, Microsoft Word). Simply sign up on Gradescope and use the course code MP8KGN.
Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Coding You may use any programming languages and standard libraries, such as NumPy
and PySpark, but you may not use specialized packages and, in particular, machine learning
libraries (e.g. sklearn, TensorFlow), unless stated otherwise. Ask on the discussion board
whether specific libraries are allowed if you are unsure.

Late Day Policy All students will be given two no-questions-asked late periods, but only
one late period can be used per homework and cannot be used for project deliverables. A
late-period lasts 48 hours from the original deadline (so if an assignment is due on Thursday
at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/20sp/faq.html
https://www.cs.washington.edu/academics/misconduct

CSE 547 - Machine Learning for Big Data - Problem Set 3 2

1 Dead Ends in PageRank Computations (25 points)

Suppose we denote the matrix of the Internet as the n-by-n matrix M , where n is the number
of webpages. Suppose there are k links out of the node (webpage) j, and

Mij =

{
1/k if there is a link from j to i
0 otherwise

For a webpage j that is a dead end (i.e., one having zero links out), the column j is all
zeroes.

Let r = [r1, r2, . . . , rn]> be an estimate of the PageRank vector. In one iteration of the
PageRank algorithm, we compute the next estimate r′ of the PageRank as: r′ = Mr.

Given any PageRank estimate vector r, define w(r) =
∑n

i=1 ri.

(a) [6pts] Suppose the Web has no dead ends. Prove that w(r′) = w(r).

(b) [9pts] Suppose there are still no dead ends, but we use a teleportation probability of
1 − β, where 0 < β < 1. The expression for the next estimate of ri becomes r′i =
β
∑n

j=1Mijrj + (1 − β)/n. Under what circumstances will w(r′) = w(r)? Prove your
conclusion.

(c) [10pts] Now, let us assume a teleportation probability of 1 − β in addition to the fact
that there are one or more dead ends. Call a node “dead” if it is a dead end and “live”
if not. Assume w(r) = 1. At each iteration, when not teleporting, each live node j
distributes βrj PageRank uniformly across each of the nodes it links to, and each dead
node j distributes rj/n PageRank to all the nodes.

Write the equation for r′i in terms of β, M , r, n, and D (where D is the set of dead
nodes). Then, prove that w(r′) = 1.

What to submit

(i) Proof [1(a)]

(ii) Condition for w(r′) = w(r) and Proof [1(b)]

(iii) Equation for r′i and Proof [1(c)]

2 The Louvain Algorithm for Community Detection

(35 points)

Note: For this question, assume all graphs are undirected and weighted.

CSE 547 - Machine Learning for Big Data - Problem Set 3 3

Communities, or clusters of densely linked nodes in a graph, are important elements of
a graph’s structure. Thus, discovering communities from an observed graph can help us
summarize the overall structure of a graph and learn more about the underlying process.
However, finding the “best” set of communities from data is often a difficult problem. One
way to measure how well a network is partitioned into communities is to calculate the number
of within-community edges relative to the number of between-community edges. This can
be formalized using modularity, defined as:

Q =
1

2m

∑
1≤i,j≤n

([
Aij −

didj
2m

]
δ (ci, cj)

)

Where A is the adjacency matrix of a graph G with n vertices and m edges, Aij is the
(i, j)-th entry of A, 2m =

∑
i,j Aij is the sum of all entries in A, di is the degree of node i, δ

is the Kronecker delta, i.e. δ(k, l) = 1 when k = l, otherwise - δ(k, l) = 0, and ci and cj are
the communities of i and j respectively. Here, we assume that communities are disjoint, i.e.
each node can only belong to one community. The modularity of a graph lies in the range
[−1, 1].

Maximizing the modularity of a given graph is a computationally hard problem. The Louvain
algorithm is a popular and efficient heuristic used to solve this problem. It is a greedy
algorithm, meaning that at every step, it will take the path that provides the largest possible
increase to the objective (modularity) at that step. Each pass of the algorithm has two
phases:

• Phase 1 (Modularity Optimization) aims to group nodes in the graph G into
communities in a way that maximizes the modularity of the graph. After the first
pass, the input graph to this step is the graph produced by phase 2 in the previous
pass (see below).

• Phase 2 (Community Aggregation) combines each community into a single node,
producing a new graph H where each node represents a community of nodes in the
graph G. This new graph H is fed into phase 1 in the next pass of the algorithm.

We repeat these two phases until we no longer increase modularity through one pass. The
algorithm proceeds as follows:

CSE 547 - Machine Learning for Big Data - Problem Set 3 4

Phase 1 (Modularity Optimization)

Input: a graph G = (V,E) with a vertex set V and an edge set E. . The input changes in each
pass of the algorithm; after pass 1 the input is the graph output by phase 2.

Output: a partition of G into communities.

1: Initialize each node i as its own community
2: for each node i ∈ V do
3: Ni ← the set of neighbors of i in G
4: for each node j in Ni do
5: ∆Qj ← the change in modularity when i is assigned to the community of j
6: end for
7: j∗ ← the neighbor that gives the most positive change in modularity ∆Qj∗

8: if ∆Qj∗ > 0 then
9: Assign node i to the community of j∗

10: else
11: Keep node i in its current community
12: end if
13: end for

Phase 2 (Community Aggregation)

Input: a graph G = (VG, EG) with a vertex set VG and an edge set EG; and the communities from
Phase 1.

Output: a graph H = (VH , EH) where each node now represents a community in the Phase 1
graph G.

1: VH ← ∅
2: EH ← ∅
3: for each community C do
4: VH ← VH ∪ {C}
5: end for
6: for each community C do
7: for each community C ′ do
8: e← {C,C ′}
9: if e 6∈ EH then

10: EH ← EH ∪ {e} (including a self-edge if C = C ′)
11: we ←

∑
v∈C
u∈C′

wv,u. . we is the weight assigned to the edge e in the
graph H. Initially, wv,u = 1 for all v and u.

12: end if
13: end for
14: end for

Again, we repeat phases 1 and 2 until no change in modularity occurs. We call each iteration
of phases 1 and 2 one pass of the algorithm. Figure 1 below illustrates the Louvain algorithm.

CSE 547 - Machine Learning for Big Data - Problem Set 3 5

Figure 1: Example from Blondel et al. showing the two phases of the Louvain algorithm

(a) [9 points] Consider a node i that is in a community all by itself. Let C represent
an existing community in the graph. Node i feels lonely and decides to move into the
community C. This situation can be modeled by a graph (Figure 2) with C represented
by a single node. The sum of the weights of the edges between i and a vertex in C is
ki,in/2, i.e. the community of i and C are connected by an edge of weight ki,in/2. The
sum of weights of edges incident to i (i.e. its weighted degree) is ki, the sum of weights
of edges incident to a vertex in C is Σtot, and Σin =

∑
j,k∈C wj,k is the sum of the weights

of the edges with both endpoints in C. As always, 2m =
∑
Aij is the sum of all entries

in the adjacency matrix. To begin with, C and i are in separate communities (colored
green and red respectively). The third node represents the remainder of the graph.

Figure 2: Before merging, i is an isolated node and C is a community.
The rest of the graph is represented by a single node.

Prove that the modularity gain seen when i merges with C (i.e., the change in modularity
after they merge into one community) is given by:

∆Q =

[
Σin + ki,in

2m
−
(

Σtot + ki
2m

)2
]
−

[
Σin

2m
−
(

Σtot

2m

)2

−
(
ki

2m

)2
]
.

Note that this expression gives us a computationally efficient way to compute the mod-
ularity changes in phase 1.

CSE 547 - Machine Learning for Big Data - Problem Set 3 6

Hint: apply the community aggregation step of the Louvain algorithm to simplify the
calculations.

(b) [12 points] Consider the graph G in Figure 3, with 4 cliques of 4 nodes each, arranged
in a ring. Assume all the edges have the same weight value 1. There exists exactly one
edge between any two adjacent cliques. We will manually (by hand) inspect the results
of the Louvain algorithm on this network.

Figure 3: G is a subgraph. The whole graph has 16 nodes (4 cliques with
4 nodes per clique)

1. [4 points] The first phase of modularity optimization detects each clique as a single
community, so there are 4 communities in total. Thus, the graph H output by the
first pass of the Louvain algorithm is a graph with four nodes, each corresponding
to one of the four cliques in G. What are the weights of each edge in the graph H?
Explain.
Hint: note that the symmetry of the ring structure simplifies the calculation.

2. [3 points] Derive the modularity of the graph H after the first pass of the Louvain
algorithm.

3. [5 points] Show mathematically that the modularity of H does not change in the
second pass of the algorithm, hence the algorithm terminates.
Hint: due to the symmetry in H, you only need to calculate a single value of ∆Q.
You may either calculate the modularity directly or extend the result of part (a).

(c) [14 points] Modularity optimization often fails to identify communities smaller than
a certain scale, which is known as the resolution limit problem. We illustrate this

CSE 547 - Machine Learning for Big Data - Problem Set 3 7

problem using a dataset with ground-truth communities; that is, we have labels for the
“true” communities of the graph. We provide the following undirected YouTube social
network. In the YouTube social network, users can form friendships with each other
and users can create groups which other users can join. We consider such user-defined
groups as ground-truth communities.

We are interested in quantifying how “good” the communities chosen by modularity
by evaluating them via a goodness metric, which we present below. Here we compare
2 scoring functions: (1) modularity (higher is better) (2) cut ratio (lower is better):
f(S) = cS

nS(n−nS)
, where cs is the number of edges crossing the boundary of community

S, nS is the number of nodes in S and n is the number of nodes in the entire graph. Our
goodness metric is density g(S) = 2mS

nS(nS−1)
, where mS is the number of edges within S.

Note that density favors small, highly connected communities; hence, we expect that
scoring functions that do poorly with smaller communities will not perform well with
respect to this metric, and that scoring functions that can accurately identify smaller
communities will have strong performance with respect to this goodness metric. Thus,
this creates a good test case for the resolution limit of modularity. From the definition,
we could see cut ratio has already taken community size into account.

We run the following experiment: the file youtube community top1000.txt in the folder
louvain/data contains the top 1000 ground-truth communities. For each community
scoring function f , we rank the ground-truth communities by decreasing score of f . So,
lower values of rank correspond to the “better” communities by each scoring function,
whereas higher values of rank correspond to the “worse” communities under each scoring
function. We measure the cumulative running average value of the goodness metric g
of the top-k ground-truth communities under the ordering induced by f . Intuitively, a
perfect community scoring function would rank the communities in decreasing order of
the goodness metric, and thus the cumulative running average of the goodness metric
would decrease monotonically with k.

You have been provided a skeleton in the file PartitionQuality.py in the folder lou-

vain/code. Your task is to complete the functions community modularity, cut ratio,
and density. Then, run the file, which executes the functions you have written and ap-
plies them to the YouTube dataset. Submit the plot density.jpg produced by the code
as part of your write-up. Interpret the plot you produce. Which metrics are performing
better for this dataset?
Hint: for the first ground-truth community in youtube community top1000.txt, the
modularity is approximately 2.15×10−5, the cut ratio is approximately 1.39×10−4, and
the density is approximately 3.62× 10−2.

What to submit

(i) Proof of 2(a).

(ii) Answers to the 3 subparts of 2(b).

CSE 547 - Machine Learning for Big Data - Problem Set 3 8

(iii) The plot density.jpg produced by your code and an interpretation thereof. [2(c)]

(iv) Upload your completed implementation of PartitionQuality.py to Gradescope.

3 Spectral Clustering (40 points)

We saw in lecture several methods for partitioning different types of graphs. In this problem,
we explore (yet another) such partitioning method called “spectral clustering”. The name
derives from the fact that it uses the spectrum of certain matrices (that is, the eigenvalues
and eigenvectors) derived from the graph.

Our overarching goals in this problem are to (1) derive a simple algorithm for spectral
clustering, and (2) see how it could also be used in finding a clustering that maximizes
modularity, something for which we already saw an algorithm in class (Louvain’s algorithm).

Let us first fix the notation we’ll use in this problem.

• Let G = (V,E) be a simple (that is, no self- or multi-edges), undirected, connected
graph with n = |V | and m = |E|.

• We use the notation {i, j} ∈ E to denote that the nodes i and j are connected via an
edge (note that since this is an undirected graph, we do not talk about the direction
of the connection).

• Let A be the adjacency matrix of G: that is, Aij =

{
1 if {i, j} ∈ E
0 otherwise

.

• We use di to denote the degree of the i-th node; by definition of the adjacency matrix,
di =

∑n
j=1Aij. We define the diagonal matrix D formed by placing the degrees of the

nodes along its diagonal. That is, Dii = di for all i = 1, 2, . . . , n.

• We define the graph Laplacian as the n× n matrix L = D − A.

• We define a vector ei ∈ Rn as zero on all coordinates except the i-th, at which it is 1.
In this case, since |V | = n, the vector ei is n-dimensional.

• Define the vector e ∈ Rn as the vector of all 1s. Again, e is an n-dimensional vector in
this case.

For a set of nodes S ⊆ V , we associate two values that measure, in some sense, its quality
as a cluster: the “cut” and the “volume”. We define these two values below.

CSE 547 - Machine Learning for Big Data - Problem Set 3 9

The “cut” of a set S is defined as the number of edges that have one end point in the set S
and the other in its complement, S = V \S:

cut(S) =
∑

i∈S,j∈S

Aij. (1)

Observe that by definition, cut(S) = cut(S). The “volume” of a set is defined as the sum of
degrees of nodes in S:

vol(S) =
∑
i∈S

di, (2)

where di is the degree of node i.

In addition to the above measures associated with set S, we define the normalized cut of a
graph (associated with a partitioning S) as

NCUT(S) =
cut(S)

vol(S)
+

cut(S)

vol(S)
(3)

For a set S to have a small normalized cut value, it must have very few edges connecting the
nodes inside S to the rest of the graph (making the numerators small), as well as roughly
equal volumes of S and S, so that neither denominator is too small.

We are now ready to start proving things. Please be careful when reading expressions
involving S and S, since at a quick glance they may look the same.

(a) Establishing Some Basics [20 points]

We first make some observations that will help us formulate the problem of minimizing
normalized cut nicely in the next sub-problem.

Given a set of nodes S, we define a vector xS ∈ Rn, such that the i-th coordinate x
(i)
S of xS

is defined as follows:

x
(i)
S =

√

vol(S)
vol(S)

if i ∈ S

−
√

vol(S)

vol(S)
otherwise

(4)

To clarify (because the font may not be clear), in Equation 4, in the case i ∈ S,
the term in the denominator under the square root is vol(S).

In the following, we are using the notation established at the start of this problem and some
set of node S ⊆ V . Prove the following statements:

1. L =
∑
{i,j}∈E(ei − ej)(ei − ej)>.

2. For any vector x ∈ Rn, it holds that x>Lx =
∑
{i,j}∈E(xi − xj)2.

CSE 547 - Machine Learning for Big Data - Problem Set 3 10

3. x>SLxS = c · NCUT(S) for some constant c that depends on the problem parameters.
Note that you should specify this constant.

4. x>SDe = 0.

5. x>SDxS = 2m.

(b) Normalized Cut Minimization [11 points]

Based on the facts we just proved about x chosen as per Equation 4, we can formulate the
normalized cut minimization problem as follows:

minimize
S⊂V

x>S LxS

x>SDxS

subject to x>SDe = 0,
x>SDxS = 2m.

To be clear, we are minimizing over all (non-trivial) partitions (S, S), where the vectors
xS are defined as described in Equation 4. Note that the two constraints appearing in the
optimization are trivially maintained due to the form xS as we have shown in the previous
sub-problem. However, constraining x to takes the form of Equation 4 makes this optimiza-
tion problem NP-Hard. We will instead relax the optimization problem, making it tractable,
and then round the relaxed solution back to a feasible point of the original problem. The
relaxation we choose eliminates the constraint on the form of x. This gives us the following
relaxed optimization problem:

minimize
x∈Rn

x>Lx
x>Dx

,

subject to x>De = 0,
x>Dx = 2m.

(5)

Show that a minimizer of the optimization problem 5 is

x∗ = D−1/2v,

where v is an eigenvector corresponding to the second smallest eigenvalue of the normalized
graph Laplacian L = D−1/2LD−1/2.

Finally, to round the solution back to a feasible point in the original problem, we can take
the nodes corresponding to the positive entries of the eigenvector to be in the set S and
those corresponding to the negative entries to be in S.

Hint 1: Use the linear transformation z = D1/2x.

Hint 2: Prove that e is the eigenvector corresponding to the smallest eigenvalue of L, and
use this fact.

Hint 3: For a symmetric matrix, we can always find eigenvectors that form an orthogonal
basis for Rn.

CSE 547 - Machine Learning for Big Data - Problem Set 3 11

(c) Relating Modularity to Cuts and Volumes [9 points]

In class, we presented the modularity of a graph clustering in the context of the Louvain
Algorithm. Modularity actually relates to cuts and volumes as well. Let us consider a
partitioning of our graph G into two clusters, and let y ∈ {1,−1}n be an assignment vector
for a set S:

yi =

{
1 if i ∈ S
−1 otherwise

(6)

Then, the modularity of the assignment y is

Q(y) =
1

2m

n∑
i,j=1

[
Aij −

didj
2m

]
δ(yi, yj). (7)

Here δ(yi, yj) is an indicator for whether or not the nodes i and j are in the same cluster:

δ(yi, yj) =

{
1 if i and j are both in the same cluster
0 otherwise

Let y be the assignment vector in Equation 6. Prove that

Q(y) =
1

2m

(
−2 · cut(S) +

1

m
vol(S) · vol(S)

)
(8)

Thus, maximizing modularity is really just minimizing the sum of the cut and the negative
product of the partition’s volumes. As a result, we can use spectral algorithms similar to the
one derived in parts 1-2 in order to find a clustering that maximizes modularity. While this
might provide an intuitively “better” clustering after inspection than the Louvain Algorithm,
spectral algorithms are computationally intensive on large graphs, and would only partition
the graph into 2 clusters.

Note: You only need to prove the relationship between modularity and cuts; you do not need
to derive the actual spectral algorithm.

What to submit

i. Proof of of the 5 equalities in part 4(a)

ii. Proof that the minimizer of the optimization problem 5 is x∗ = D−1/2v [4(b)]

iii. Proof of Equation 8 [4(c)]

	Dead Ends in PageRank Computations (25 points)
	The Louvain Algorithm for Community Detection (35 points)
	Spectral Clustering (40 points)

