Announcements -- Poster Session:

 Monday Allen Center Atrium, 10:00am-1:00pm

« Attendance is mandatory — one person should be at poster

» Please prepare a 2 minute project pitch and a 5 minute project pitch to
give to the instructor/TAs

» Upload your final report on Gradescope by Sunday 23:59pm — no late
periods

» Upload your poster PDF on Gradescope by Monday 10am — no late
periods

« Arrive on time / early to set up poster

« We’'ll have coffee, tea, snacks

* Go explore and learn about each other’s projects

Submodular Optimization

CS547 Machine Learning for Big Data
Tim Althoff
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




Announcement

Course evaluation is out
See link on Piazza (pinned)

Please fill out the form before June 9. Thanks!!!
We appreciate your feedback!

6/5/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Thanks!

Class at a Glance Updated 5 seconds ago. Reload

no unread posts total posts
total contributions
no unanswered questions Instructors’ responses
students' responses
no unresolved followups avg. response time
Student Enrollment ..out of 100 (estimated) Edit
109 enrolled

Teaching Assistants

Alex Okeson Alon Milchgrub Jessica Perry Mathew Luo Nicasia Beebe-Wang Swati Padmanabhan
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Motivation

Learned about: LSH/Similarity search &
recommender systems

. Il N &
Search: “jaguar” BEsg " ~a

= JAGUAR

Google

Uncertainty about the user’s information need

Don’t put all eggs in one basket!
Relevance isn’t everything — need diversity!
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Many applications need diversity!

Recommendation:

NETFLIX

Summarization:
“Robert Downey Jr.”

WIKIPEDIA

News Media:

YAHOO!

NEWS
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Automatic Timeline Generation

pppppp

Timeline

Goal: Timeline should express his relationships to other

people through events (personal, collaboration,
mentorship, etc.)

Why timelines?
Easier: Wikipedia article is 18 pages long
Context: Through relationships & event descriptions
Exploration: Can “jump” to other people
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Problem Definition

Given:
Relevant relationships

Events that each cover some relationships

Goal: Given a large set of events, pick a small
subset that explains most known
relationships (“the timeline”)
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http://cs.stanford. edu/ althoff/timemachine/demo.html

Example Timeline

LAST PARTY 3

2000
" Deborah The Party's
Ben Stiller Falconer Over

Robert
Downey, Sr.

Paramount
Pictures

A'IIy McBeal

Chaplin

1995 2000

“RDJr starred in Chaplin\
in 1992 together with

kwf\nthony Hopkins.”

Susan Down‘ey Iron Man 2 Iron Man 3

Y .v»;"i
Y./

“ ‘1¢ - &N
(AVENGERS

-2 -,

Gothika Iron Man The Avengers

2005 2010

Good overview
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http://cs.stanford.edu/~althoff/timemachine/demo.html

Why diversity?

User studies: People hate redundancy!

Chaplin
Academy
Award N.

Rented Lips
US Release

Iron Man Iron Man

US Release Award
Ceremony | VS

Iron Man
US Release

Iron Man

EU Release

Want to see more diverse set of relationships




Diversity as Coverage



Encode Diversity as Coverage

= ldea: Encode diversity as coverage problem
= Example: Selecting events for timeline

* Try to cover all important relationships

w4 -




What is being covered?

Q: What is being covered?
A: Relationships

Captain America Anthony Hopkins  Gwyneth Paltrow Susan Downey

Sl

—

Downey Jr. starred in Chaplin together with Anthony Hopkins

Q: Who is doing the covering?
A: Events
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Simple Coverage Model

Suppose we are given a set of events E X,
Each event e coversaset X, C U of
relationships €

For a set of events § C F we define:

F(S) = J x.

ecsS
Goal: We want to max F(S)  Cardinality
|S[<k o Constraint

Note: F(S) is a set function: F(S) : 2¥ — N
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Maximum Coverage Problem

Given universe of elements U = {uy,...,u,}
andsets {Xi1,..., X} CU

U: all relationships
X;: relationships
covered by event i

Goal: Find set of k events X,...X, covering most of U

More precisely: Find set of k events X,...X, whose size of
the union is the largest
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Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:
Start with S, = {}
Fori=1..k

Take event e that max F'(S;_1 U e)
Let S; = S;_1 U {6} F(S)

Example:
Eval. F({e,}), ..., F({e,,}), pick best (say e,)

Eval. F({e,} u{e,}), ..., F({e,} u {e}), pick best (say e,)
Eval. F({e,, e,} u {e5}), ..., F({e,, e,} u{e,.}), pick best
And so on...
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Simple Greedy Heuristic

Goal: Maximize the covered area

O
O )
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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When Greedy Heuristic Fails?

6/5/19

C

Goal: Maximize the size of the covered area
with two sets

Greedy first picks A and then C
But the optimal way would be to pick B and C
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Bad News & Good News

Bad news: Maximum Coverage is NP-hard

Good news: Good approximations exist

Problem has certain structure to it that even
simple greedy algorithms perform reasonably well

Details in 2" half of lecture

Now: Generalize our objective for timeline
generation

6/5/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Issue 1: Not all relationships are created equal

Objective values all relationships equally

F(S)=| )X =) 1where R=| ] X,

ecS rcR ecS

Unrealistic: Some relationships are more
important than others

use different weights (“weighted coverage function”)

F(S)=> w(r) w:R— RT
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Example weight function

Use global importance weights
How much interest is there?

Could be measured as

= w(X) = # search queries for person X
= w(X) = # Wikipedia article views for X
= w(X) = # news article mentions for X

Captain America Anthony Hopkins  Gwyneth Paltrow Susan Downey

v

Ca ptain America Anthony Hopkins Gwyneth Paltrow Susan Downey
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Better weight function

Captain America Justin Bieber Susan Downey Tim Althoff

¢ Applying global importance weights

Some relationships are not (very) globally
important but (not) highly relevant to timeline
Need relevant to timeline instead of globally
relevant

w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)
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Capturing relevance to timeline

Can use co-occurrence statistics
w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))
Similar: Pointwise mutual information (PMl)

How often do X and Y occur together compared to
what you would expect if they were independent

Accounts for popular entities (e.g., Justin Bieber)
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Issue 2: Differentiating between events

6/5/19

How to differentiate between two events that
cover the same relationships?

Example: Robert and Susan Downey

Event 1: Wedding, August 27, 2005
Event 2: Minor charity event, Nov 11, 2006

We need to be able to distinguish these!

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

27



Scoring of event timestamps

Further improvement when we not only score
relationships but also score the event timestamp

F(S) =)  wr(r) H)_wr(t)

reR ecS where
/ T J X
eesS
Relationship (as before) Timestamps

Again, use co-occurrences for weights w+
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Co-occurrences on Web Scale

Marvel's The Avengers

Bl S 3 %)

Release Date: May 04, 2012

Starnng Gwvneth Paltrow, Chris Evans, Scarlett Johansson, Chris Hemsworth, Tom Hiddleston,
: Stellan Skarsgard, Clark Gregg, Jeremy Renner, Mark Ruffalo, Cobie Smulders,
Robert Downey Jr.

tion with Paramount Pictures QJ
ero team up of a lifetime, 2

Ir[:n 1dr\ }\t‘ |ru rt‘d b e Hulk,

LG
unexpected enemy emerges that ‘.t‘\reatens g l::ba s.afe‘.;,-' and security,
Nick Fury, Director of the ...

(AVENGERS

N
O
3
“‘Robert Downey Jr” and “May 4, 2012” occurs 173
times on 71 different webpages

US Release date of The Avengers

Use MapReduce on 10B web pages (10k+ machines)
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Complete Optimization Problem

Generalized earlier coverage function to
linear combination of weighted coverage

functions
where
F(S) =) wgr(r)+ > wr(te)
reR ecS v = U Xe
Goal: max F(S) ces
|S|<k
Still NP-hard

(because generalization of NP-hard problem)
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Next

How can we actually optimize this function?
What structure is there that will help us do

this efficiently?

Any questions so far?
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Next

How can we actually optimize this function?
What structure is there that will help us do

this efficiently?

Any questions so far?
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6/5/19

Approximate Solution

For this optimization problem, Greedy

produces a solution S
s.t. F(S) >(1-1/e)*OPT (F(S) =>0.63*0OPT)

[Nemhauser, Fisher, Wolsey "78]

Claim holds for functions F(-) which are:
= Submodular, Monotone, Normal, Non-negative

(discussed next)
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Submodularity: Definition 1

Definition:
Set function F(:) is called submodular if:
For all PQc U:

F(P) + F(Q) = F(P_L Q) + F(P Q)

oD +

6/5/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Submodularity: Definition 2

Checking the previous definition is not easy in practice

Substitute P=A U{d}and Q =B where

in the definition above
From before: F(P) + F(Q) = F(PL Q) + F(PN Q)

F(AU{d}) + F(B) = F(A_{d} UB) + F((A_ {d}) N B)

F(AU{d}) + F(B) = F(BAd}) + F(A)

F(Au{d} - F(A) = F(BLAd}) — F(B)

Common definition of Submodularity

6/5/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Submodularity: Definition 2

Diminishing returns characterization

F(A _d)-F(A) > F(B _d)—-F(B)

Gain of adding d to a small set Gain of adding d to a large set

+ ed < Large improvement I

+ o d < Smallimprovement]
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Submodularity: Diminishing Returns

F(A d)—-F(A) 2 F(B _d) - F(B)

Gain of adding d to a small set Gain of adding d to a large set
" VAcCB
F(B U d)
F(B)
F(AuU d)
F(A) Adding d to B helps less
than adding it to Al

6/5/19

Solution size |A|
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Submodularity: An important property

Let F, ... F,, be submodular functions and

A, ...\, 20 and let S denote some solution set,
then the non-negative linear combination F(S)
(defined below) of these functions is also
submodular.
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Submodularity: Approximation Guarantee

6/5/19

When maximizing a submodular function with
cardinality constraints, Greedy produces a
solution S for which F(S) = (1-1/e)*OPT

i.e., (F(S) =0.63*0PT)

[Nemhauser, Fisher, Wolsey "78]

Claim holds for functions F(-) which are:
* Monotone: if A B then F(A) < F(B)

* Normal: F({})=0

* Non-negative: For any A, F(A) =0

= In addition to being submodular

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Back to our Timeline Problem



Simple Coverage Model

Suppose we are given a set of events E X,
Each event e covers a set X _ of ‘
relationships U )y €

For a set of events § C F we define:

F(S) = J x.

eeS
Goal: We want to max F(S)  Cardinality
|S1<k Constraint

Note: F(S) is a set function: F(S) : 2¥ — N
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Simple Coverage: Submodular?

Claim: F(S) =

U X,

ecS

is submodular.

A%

Gain of adding X, to a smaller set

Gain of adding X, to a larger set

6/5/19

F(A UX,)-F(A) > F(B UX.)- F(B)




Simple Coverage: Other Properties

6/5/19

Claim: F(S)=||J X¢| is normal & monotone
ecS

Normality: When S is empty, LGJSX@ IS empty.

Monotonicity: Adding a new event to S can
never decrease the number of relationships
covered by S.

What about non-negativity?

Monotone: if A € B then F(A) < F(B)
Normal: F({})=0
Non-negative: For any A, F(A) >0

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity

Monotonicity

Normality
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Weighted Coverage (Relationships)

F(S) = Z w(r) w:R—RT }évhireu X,

,r.eR ecS

Claim: F(S) is submodular.

Consider two sets Aand Bs.t. Ac Bc S and let us
consideranevente ¢ B
Three possibilities when we add e to A or B:

= Case 1: e does not cover any new relationships w.r.t
bothAandB

F(AU {e})-F(A)=0=FBU {e})-F(B)
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Weighted Coverage (Relationships)

F(S)=> w(r) w:R—RY
reR
Claim: F(S) is submodular.

Three possibilities when we add e to A or B:

= Case 2: e covers some new relationships w.r.t A but not
w.r.t B

F(AU {e})-F(A)= v where v 20
F(BU{e})-F(B)=0
Therefore, F(A U {e}) —F(A) > F(B U {e}) — F(B)

6/5/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547



Weighted Coverage (Relationships)

F(S)=> w(r) w:R—RY
reR
Claim: F(S) is submodular.

Three possibilities when we add e to A or B:

= Case 3: e covers some new relationships w.r.t both A and
B

F(AU {e})— F(A) =v where v>0
F(BU {e})—F(B) =u where u>0

But, v > u because e will always cover fewer new
relationships w.r.t B than w.r.t A
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Weighted Coverage (Relationships)

6/5/19

F(S)=> w(r) w:R—R" fV%VhieU Xe

ecS
reR

Claim: F(S) is monotone and normal.
Normality: When S is empty, - GLQJSXe is empty.
Monotonicity: Adding a new event to S can

never decrease the number of relationships
covered by S.



Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/

Monotonicity \/ \/

Normality v v
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Weighted Coverage (Timestamps)

6/5/19

F(S) =Y wr(te)

eeS

Claim: F(S) is submodular, monotone and
normal

Analogous arguments to that of weighted
coverage (relationships) are applicable



Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/ \/

Monotonicity \/ \/ \/

Normality v v v
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Complete Optimization Problem

= Generalized earlier coverage function to non-
negative linear combination of weighted
coverage functions

where
- &ty

S
= Goal: max F °c

1S|<k

= Claim: F(A) is submodular, monotone and
normal
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Complete Optimization Problem

Submodularity: F(S) is a non-negative linear
combination of two submodular functions.
Therefore, it is submodular too.

Normality: F,({}) =0 = F,({})
F.({}) +F,({}) =0

Monotonicity: Let Ac B cS,
F.(A) <F,(B)and F,(A) < F,(B)
F.(A) + F,(A) < F,(B) + F,(B)
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/ \/ \/

Monotonicity \/ \/ \/ \/

Normality v v v v
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Lazy Optimization of
Submodular Functions



Greedy Solution

Greedy
Marginal gain: Greedy Algorithm is Slow!
FSLX)-FO) At each iteration, we need to
g | evaluate marginal gains of all
> [ the remaining elements
¢ Runtime O(|U| * K) for
d selecting K elements out of
¢ the set U

Add element with
highest marginal gain
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Speeding up Greedy

In round i:
So farwe have S, ; ={e; ... e, 4}

Now we pick an element e S, ; which maximizes
the marginal benefit A, = F(S,; U {e}) = F(S:,)
Observation:

Marginal gain of any element e can never
increase!

For every element e:
A; (e) = Aj(r) for all iterations i < j

6/5/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
.. (Upper bound on)

Use A; as upper-bound on A; (j > 1) \arginal gain A,
Lazy Greedy: a ] Asfa)

Keep an ordered list of marginal b

benefits A; from previous iteration

Re-evaluate A; only for top node ]

Re-sort and prune .

F(A U{dj)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:

.. Upper bound on
Use A; as upper-bound on Aj (> i) Marginal gain A,

Lazy Greedy: a ] Asfa)
Keep an ordered list of marginal b

benefits A; from previous iteration

Re-evaluate A; only for top node

Re-sort and prune

F(A U{dj)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:

.. Upper bound on
Use A; as upper-bound on Aj (> i) Marginal gain A,

Lazy Greedy: a ] Asfa)
Keep an ordered list of marginal d . A,={a.b}

benefits A; from previous iteration |

Re-evaluate A; only for top node

€

Re-sort and prune

C

F(A U{dj)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Speed Up of Lazy Greedy Algorithm

Lazy greedy offers significant speed-up over
traditional greedy implementations in

practice.

Lower is better

6/5/19

<

400 \ \ \ \ \

exhaustive search
(all subsets)

naive

running time (seconds)

Lazy

l

——+¢

v

1 2 3 4 5 6

8 9 10

number of elements selected
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