#### **Announcements -- Poster Session:**

- Monday Allen Center Atrium, 10:00am-1:00pm
- Attendance is mandatory one person should be at poster
- Please prepare a 2 minute project pitch and a 5 minute project pitch to give to the instructor/TAs
- Upload your final report on Gradescope by Sunday 23:59pm no late periods
- Upload your poster PDF on Gradescope by Monday 10am no late periods
- Arrive on time / early to set up poster
- We'll have coffee, tea, snacks
- Go explore and learn about each other's projects

# **Submodular Optimization**

Tim Althoff
PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

#### Announcement

- Course evaluation is out
  - See link on Piazza (pinned)
  - Please fill out the form before June 9. Thanks!!!
- We appreciate your feedback!

#### Thanks!

#### Class at a Glance Updated 5 seconds ago. Reload



no unread posts



no unanswered questions



no unresolved followups

Student Enrollment

109 enrolled

206 total posts

**705** total contributions

231 instructors' responses

58 students' responses

16 min avg. response time

..out of 100 (estimated) Edit

#### **Teaching Assistants**



Alex Okeson



Alon Milchgrub



Jessica Perry



Mathew Luo



Nicasia Beebe-Wang



Swati Padmanabhan

#### Motivation

Learned about: LSH/Similarity search & recommender systems

Search: "jaguar"









- Uncertainty about the user's information need
  - Don't put all eggs in one basket!
- Relevance isn't everything need diversity!

# Many applications need diversity!

Recommendation: NETFLIX









Summarization:

 "Robert Downey Jr."
 WIKIPEDIA









News Media:











#### **Automatic Timeline Generation**





#### Person

#### **Timeline**

 Goal: Timeline should express his relationships to other people through events (personal, collaboration, mentorship, etc.)

#### Why timelines?

- Easier: Wikipedia article is 18 pages long
- Context: Through relationships & event descriptions
- Exploration: Can "jump" to other people

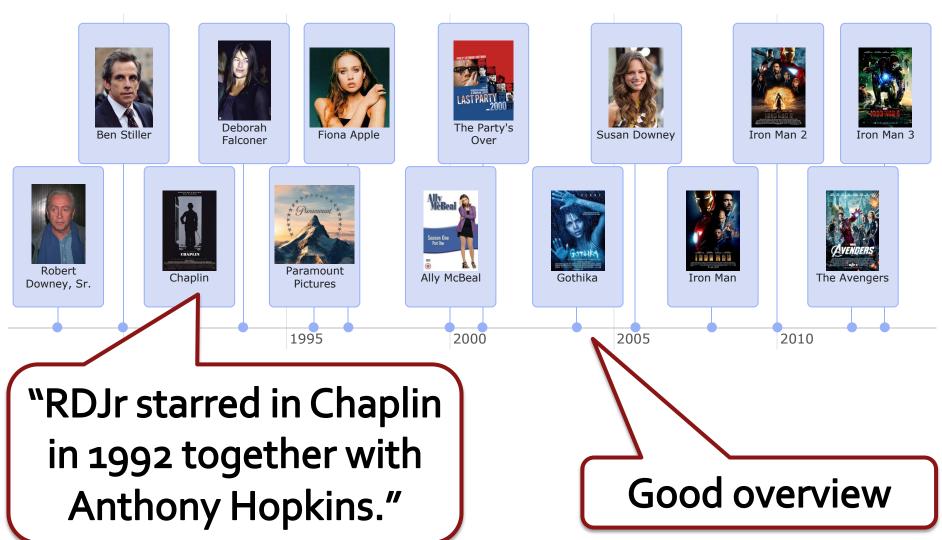
#### **Problem Definition**

- Given:
  - Relevant relationships
  - Events that each cover some relationships

 Goal: Given a large set of events, pick a small subset that explains most known relationships ("the timeline")

# **Example Timeline**





# Why diversity?

User studies: People hate redundancy!

**Iron Man US** Release Iron Man

Award

Ceremony

Iron Man

**EU Release** 

VS

Iron Man

**US** Release

Chaplin Academy

Award N.

**Rented Lips** 

**US** Release

Want to see more diverse set of relationships

















# **Diversity as Coverage**

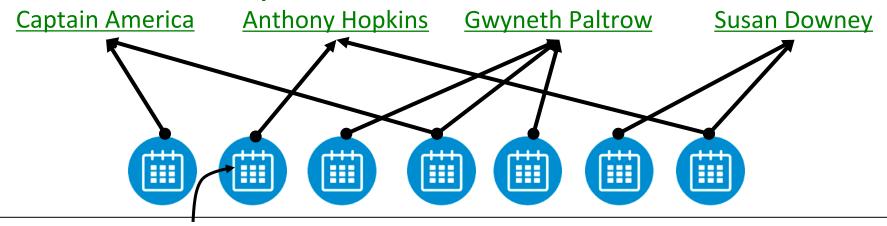
# **Encode Diversity as Coverage**

- Idea: Encode diversity as coverage problem
- Example: Selecting events for timeline
  - Try to cover all important relationships



# What is being covered?

- Q: What is being covered?
- A: Relationships

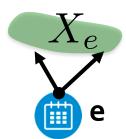


Downey Jr. starred in *Chaplin* together with Anthony Hopkins

- Q: Who is doing the covering?
- A: Events

# Simple Coverage Model

- Suppose we are given a set of events E
  - ${\color{red} \bullet}$  Each event  ${\color{red} \bullet}$  covers a set  $X_e \subseteq U$  of relationships



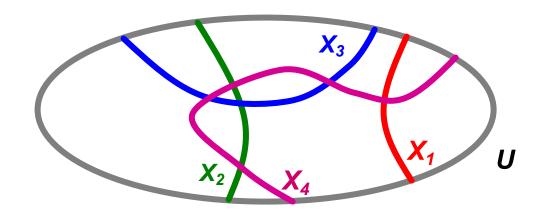
• For a set of events  $S \subset E$  we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

- Goal: We want to  $\max_{|S| \le k} F(S)$  Cardinality Constraint
- Note: F(S) is a set function:  $F(S): 2^E \to \mathbb{N}$

# **Maximum Coverage Problem**

• Given universe of elements  $U=\{u_1,\ldots,u_n\}$  and sets  $\{X_1,\ldots,X_m\}\subseteq U$ 



U: all relationships X<sub>i</sub>: relationships covered by event i

- Goal: Find set of k events X<sub>1</sub>...X<sub>k</sub> covering most of U
  - More precisely: Find set of k events  $X_1...X_k$  whose size of the union is the largest

#### **Simple Heuristic: Greedy Algorithm:**

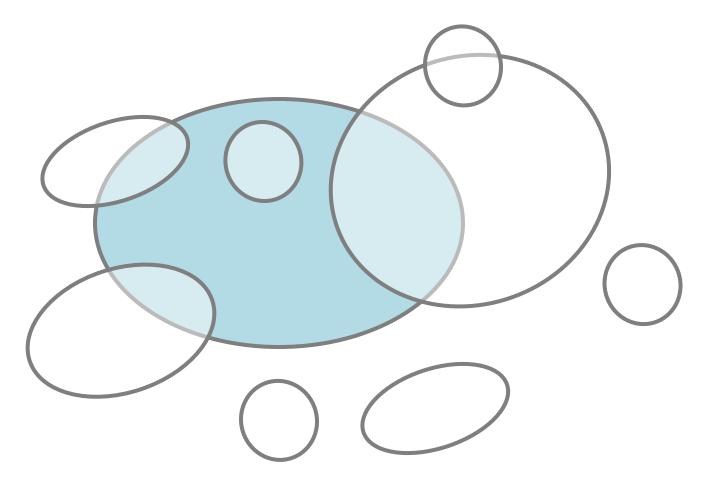
- Start with  $S_0 = \{\}$
- For i = 1...k
  - Take event **e** that max  $F(S_{i-1} \cup e)$
  - Let  $S_i = S_{i-1} \cup \{e\}$

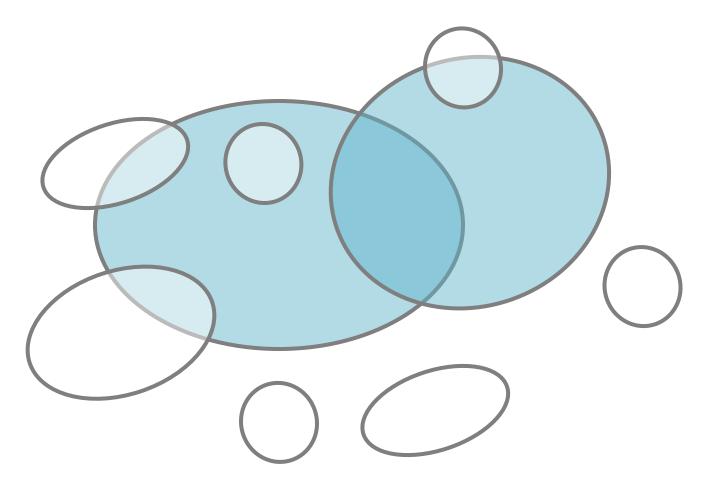
$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

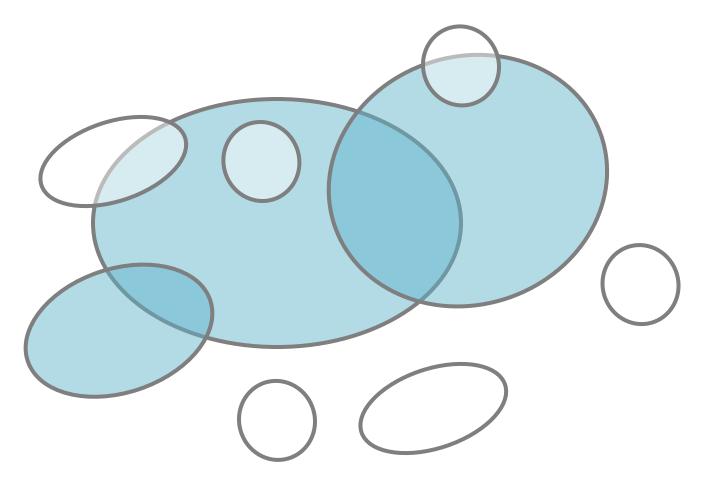
#### Example:

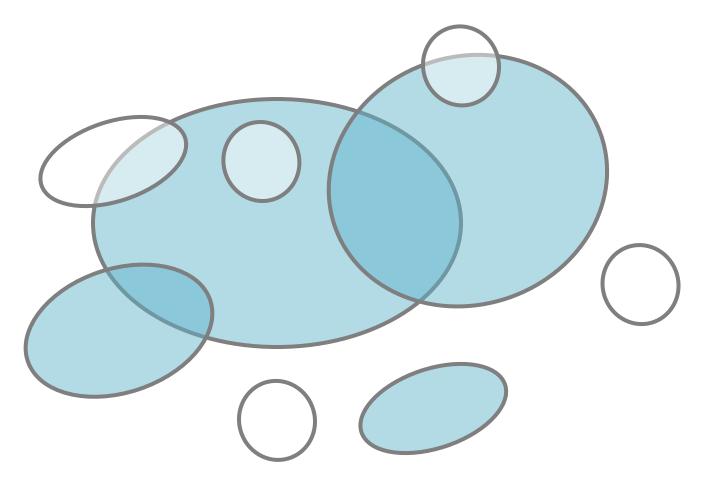
- Eval. F({e<sub>1</sub>}), ..., F({e<sub>m</sub>}), pick best (say e<sub>1</sub>)
- Eval. F({e<sub>1</sub>} u {e<sub>2</sub>}), ..., F({e<sub>1</sub>} u {e<sub>m</sub>}), pick best (say e<sub>2</sub>)
- Eval.  $F({e_1, e_2} u {e_3}), ..., F({e_1, e_2} u {e_m}),$  pick best
- And so on...



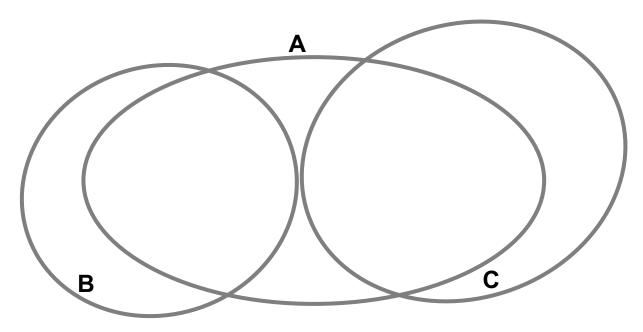








#### When Greedy Heuristic Fails?



- Goal: Maximize the size of the covered area with two sets
- Greedy first picks A and then C
- But the optimal way would be to pick B and C

#### **Bad News & Good News**

- Bad news: Maximum Coverage is NP-hard
- Good news: Good approximations exist
  - Problem has certain structure to it that even simple greedy algorithms perform reasonably well
  - Details in 2<sup>nd</sup> half of lecture
- Now: Generalize our objective for timeline generation

#### Issue 1: Not all relationships are created equal

Objective values all relationships equally

$$F(S) = \left| \bigcup_{e \in S} X_e \right| = \sum_{r \in R} 1 \text{ where } R = \bigcup_{e \in S} X_e$$

- Unrealistic: Some relationships are more important than others
  - use different weights ("weighted coverage function")

$$F(S) = \sum_{r \in R} w(r) \qquad w: R \to \mathbb{R}^+$$

#### **Example weight function**

- Use global importance weights
- How much interest is there?
- Could be measured as
  - w(X) = # search queries for person X
  - w(X) = # Wikipedia article views for X
  - w(X) = # news article mentions for X

Captain America

**Anthony Hopkins** 

**Gwyneth Paltrow** 

Susan Downey



#### Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

### **Better weight function**

Captain America

Justin Bieber

Susan Downey

**Tim Althoff** 



Applying global importance weights

Captain America

<u>Justin Bieber</u>

Susan Downey



- Some relationships are not (very) globally important but (not) highly relevant to timeline
- Need relevant to timeline instead of globally relevant

w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

# Capturing relevance to timeline

- Can use co-occurrence statistics
  w(X | RDJr) = #(X and RDJr) / (#(RDJr) \* #(X))
  - Similar: Pointwise mutual information (PMI)
  - How often do X and Y occur together compared to what you would expect if they were independent
  - Accounts for popular entities (e.g., Justin Bieber)

#### Issue 2: Differentiating between events

- How to differentiate between two events that cover the same relationships?
- Example: Robert and Susan Downey
  - Event 1: Wedding, August 27, 2005
  - Event 2: Minor charity event, Nov 11, 2006
- We need to be able to distinguish these!

# Scoring of event timestamps

 Further improvement when we not only score relationships but also score the event timestamp

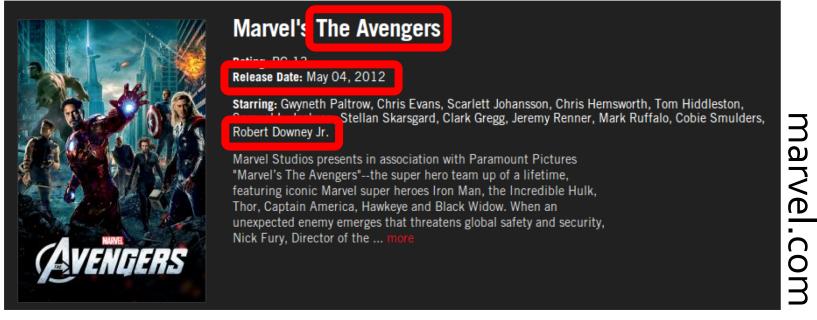
$$F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)$$
 where 
$$R = \bigcup_{e \in S} X_e$$

Relationship (as before)

**Timestamps** 

Again, use co-occurrences for weights w<sub>T</sub>

#### Co-occurrences on Web Scale



- "Robert Downey Jr" and "May 4, 2012" occurs 173 times on 71 different webpages
- US Release date of *The Avengers*
- Use MapReduce on 10B web pages (10k+ machines)

### **Complete Optimization Problem**

 Generalized earlier coverage function to linear combination of weighted coverage functions

$$F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)$$
 where  $R = \bigcup_{e \in S} X_e$ 

- Goal:  $\max_{|S| \le k} F(S)$
- Still NP-hard (because generalization of NP-hard problem)

#### Next

- How can we actually optimize this function?
- What structure is there that will help us do this efficiently?

Any questions so far?

#### Next

- How can we actually optimize this function?
- What structure is there that will help us do this efficiently?

Any questions so far?

#### **Approximate Solution**

For this optimization problem, <u>Greedy</u> produces a solution S s.t.  $F(S) \ge (1-1/e)*OPT$   $(F(S) \ge 0.63*OPT)$  [Nemhauser, Fisher, Wolsey '78]

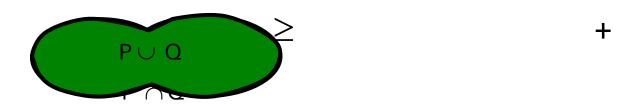
- Claim holds for functions F(·) which are:
  - Submodular, Monotone, Normal, Non-negative (discussed next)

# Submodularity: Definition 1

#### **Definition:**

Set function F(·) is called submodular if: For all P,Q⊆U:

$$F(P) + F(Q) \ge F(P \cup Q) + F(P \cap Q)$$



### Submodularity: Definition 2

- Checking the previous definition is not easy in practice
- Substitute  $P = A \cup \{d\}$  and Q = B where  $A \subseteq B$  and  $d \notin B$  in the definition above

From before:  $F(P) + F(Q) \ge F(P \cup Q) + F(P \cap Q)$ 

$$F(A \cup \{d\}) + F(B) \ge F(A \cup \{d\} \cup B) + F((A \cup \{d\}) \cap B)$$

$$F(A \cup \{d\}) + F(B) \ge F(B \cup \{d\}) + F(A)$$

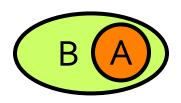
$$F(A \cup \{d\} - F(A) \ge F(B \cup \{d\}) - F(B)$$

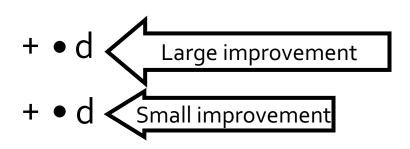
Common definition of Submodularity

# Submodularity: Definition 2

Diminishing returns characterization

$$F(A \cup d) - F(A) \ge F(B \cup d) - F(B)$$
Gain of adding  $d$  to a small set
Gain of adding  $d$  to a large set



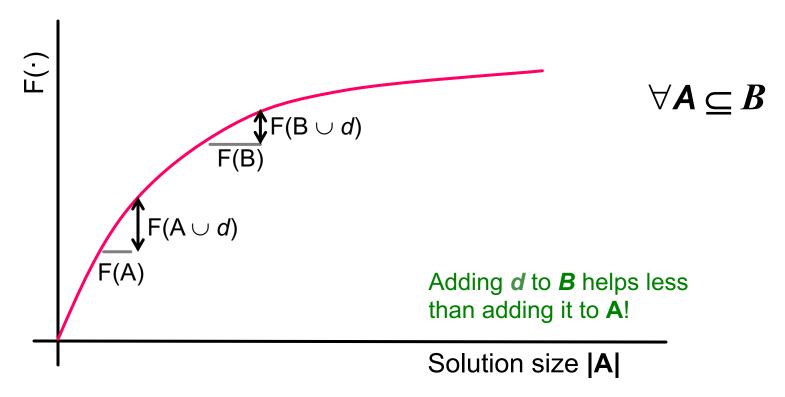


# **Submodularity: Diminishing Returns**



Gain of adding **d** to a small set

Gain of adding **d** to a large set



#### Submodularity: An important property

Let  $F_1 ext{ ... } F_M$  be submodular functions and  $\lambda_1 ext{ ... } \lambda_M \geq 0$  and let S denote some solution set, then the non-negative linear combination F(S) (defined below) of these functions is also submodular.

$$F(S) = \sum_{i=1}^{M} \lambda_i F_i(S)$$

#### **Submodularity: Approximation Guarantee**

When maximizing a submodular function with cardinality constraints, Greedy produces a solution S for which  $F(S) \ge (1-1/e)*OPT$  i.e.,  $(F(S) \ge 0.63*OPT)$ 

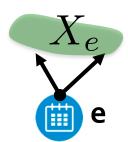
[Nemhauser, Fisher, Wolsey '78]

- Claim holds for functions F(·) which are:
  - Monotone: if  $A \subseteq B$  then  $F(A) \leq F(B)$
  - Normal: F({})=0
  - Non-negative: For any A,  $F(A) \ge 0$
  - In addition to being submodular

#### **Back to our Timeline Problem**

# Simple Coverage Model

- Suppose we are given a set of events E
  - ${\color{red} \bullet}$  Each event  ${\color{red} \mathbf{e}}$  covers a set  $X_e$  of relationships  ${\bf U}$



■ For a set of events  $S \subset E$  we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

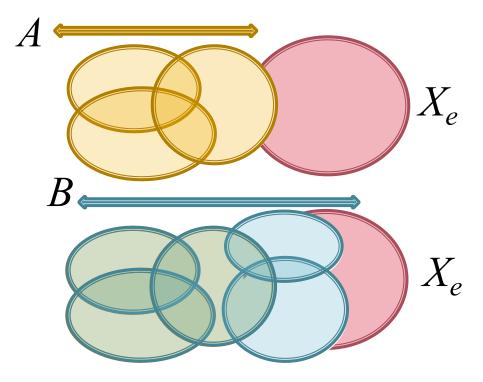
- Goal: We want to  $\max_{|S| \le k} F(S)$  Cardinality Constraint
- Note: F(S) is a set function:  $F(S): 2^E \to \mathbb{N}$

#### Simple Coverage: Submodular?

• Claim:  $F(S) = \left| \bigcup_{e \in S} X_e \right|$  is submodular.

Gain of adding  $X_e$  to a smaller set

Gain of adding  $X_e$  to a larger set



$$F(A \cup X_e) - F(A) \geq F(B \cup X_e) - F(B)$$

$$\forall A \subset B$$

#### Simple Coverage: Other Properties

• Claim: 
$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$
 is normal & monotone

- Normality: When S is empty,  $\bigcup_{e \in S} X_e$  is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.
- What about non-negativity?

**Monotone**: if  $A \subseteq B$  then  $F(A) \leq F(B)$ 

*Normal: F({})=0* 

**Non-negative:** For any A,  $F(A) \ge 0$ 

## Summary so far

|               | Simple<br>Coverage | Weighted<br>Coverage<br>(Relationships) | Weighted<br>Coverage<br>(Timestamps) | Complete<br>Optimization<br>Problem |
|---------------|--------------------|-----------------------------------------|--------------------------------------|-------------------------------------|
| Submodularity | <b>√</b>           |                                         |                                      |                                     |
| Monotonicity  | <b>√</b>           |                                         |                                      |                                     |
| Normality     | <b>√</b>           |                                         |                                      |                                     |

$$F(S) = \sum_{r \in R} w(r) \qquad w: R o \mathbb{R}^+ \qquad \stackrel{ ext{where}}{R = igcup_{e \in S} X_e}$$

- Claim: F(S) is submodular.
  - Consider two sets A and B s.t. A ⊆ B ⊆ S and let us consider an event e ∉ B
  - Three possibilities when we add e to A or B:
    - Case 1: e does not cover any new relationships w.r.t both A and B

$$F(A \cup \{e\}) - F(A) = 0 = F(B \cup \{e\}) - F(B)$$

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+$$

- Claim: F(S) is submodular.
  - Three possibilities when we add e to A or B:
    - Case 2: e covers some new relationships w.r.t A but not w.r.t B

F(A U {e}) – F(A) = 
$$v$$
 where  $v \ge 0$   
F(B U {e}) – F(B) = 0  
Therefore, F(A U {e}) – F(A)  $\ge$  F(B U {e}) – F(B)

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+$$

- Claim: F(S) is submodular.
  - Three possibilities when we add e to A or B:
    - Case 3: e covers some new relationships w.r.t both A and B

$$F(A \cup \{e\}) - F(A) = v \text{ where } v \ge 0$$

$$F(B \cup \{e\}) - F(B) = u \text{ where } u \ge 0$$

But,  $v \ge u$  because e will always cover fewer new relationships w.r.t B than w.r.t A

$$F(S) = \sum_{r \in R} w(r)$$
  $w: R o \mathbb{R}^+$  where  $R = igcup_{e \in S} X_e$ 

- Claim: F(S) is monotone and normal.
- Normality: When S is empty,  $R = \bigcup_{e \in S} X_e$  is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.

### Summary so far

|               | Simple<br>Coverage | Weighted<br>Coverage<br>(Relationships) | Weighted<br>Coverage<br>(Timestamps) | Complete<br>Optimization<br>Problem |
|---------------|--------------------|-----------------------------------------|--------------------------------------|-------------------------------------|
| Submodularity | $\checkmark$       | <b>√</b>                                |                                      |                                     |
| Monotonicity  | $\checkmark$       | $\checkmark$                            |                                      |                                     |
| Normality     | $\checkmark$       | <b>√</b>                                |                                      |                                     |

# Weighted Coverage (Timestamps)

$$F(S) = \sum_{e \in S} w_T(t_e)$$

Claim: F(S) is submodular, monotone and normal

 Analogous arguments to that of weighted coverage (relationships) are applicable

# Summary so far

|               | Simple<br>Coverage | Weighted<br>Coverage<br>(Relationships) | Weighted<br>Coverage<br>(Timestamps) | Complete<br>Optimization<br>Problem |
|---------------|--------------------|-----------------------------------------|--------------------------------------|-------------------------------------|
| Submodularity | $\checkmark$       | <b>√</b>                                | <b>√</b>                             |                                     |
| Monotonicity  | $\checkmark$       | $\checkmark$                            | <b>√</b>                             |                                     |
| Normality     | $\checkmark$       | <b>√</b>                                | <b>√</b>                             |                                     |

#### **Complete Optimization Problem**

 Generalized earlier coverage function to nonnegative linear combination of weighted coverage functions

$$F(S) = F_1(S) + F_2(S)$$

where 
$$R = \bigcup X_e$$

 $e \in S$ 

- Goal:  $\max_{|S| \le k} F(S)$
- Claim: F(A) is submodular, monotone and normal

#### **Complete Optimization Problem**

- Submodularity: F(S) is a non-negative linear combination of two submodular functions.
   Therefore, it is submodular too.
- Normality:  $F_1(\{\}) = 0 = F_2(\{\})$  $F_1(\{\}) + F_2(\{\}) = 0$
- Monotonicity: Let  $A \subseteq B \subseteq S$ ,  $F_1(A) \le F_1(B)$  and  $F_2(A) \le F_2(B)$  $F_1(A) + F_2(A) \le F_1(B) + F_2(B)$

### Summary so far

|               | Simple<br>Coverage | Weighted<br>Coverage<br>(Relationships) | Weighted<br>Coverage<br>(Timestamps) | Complete<br>Optimization<br>Problem |
|---------------|--------------------|-----------------------------------------|--------------------------------------|-------------------------------------|
| Submodularity | $\checkmark$       | <b>√</b>                                | <b>√</b>                             | $\checkmark$                        |
| Monotonicity  | $\checkmark$       | $\checkmark$                            | <b>√</b>                             | $\checkmark$                        |
| Normality     | $\checkmark$       | <b>√</b>                                | <b>√</b>                             | $\checkmark$                        |

# Lazy Optimization of Submodular Functions

#### **Greedy Solution**

#### Greedy

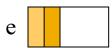
Marginal gain:  $F(S \cup x)-F(S)$ 











Add element with highest marginal gain

- Greedy Algorithm is Slow!
- At each iteration, we need to evaluate marginal gains of all the remaining elements
- Runtime O(|U| \* K) for selecting K elements out of the set U

# Speeding up Greedy

#### In round i:

- So far we have  $S_{i-1} = \{e_1 ... e_{i-1}\}$
- Now we pick an element e ∉ S<sub>i-1</sub> which maximizes the marginal benefit Δ<sub>i</sub> = F(S<sub>i-1</sub> U {e}) − F(S<sub>i-1</sub>)

#### Observation:

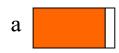
- Marginal gain of any element e can never increase!
- For every element e:  $\Delta_i$  (e)  $\geq \Delta_i$ (r) for all iterations i < j

#### Lazy Greedy

#### Idea:

- Use  $\Delta_i$  as upper-bound on  $\Delta_j$  (j > i)
- Lazy Greedy:
  - Keep an ordered list of marginal benefits  $\Delta_i$  from previous iteration
  - Re-evaluate  $\Delta_i$  only for top node
  - Re-sort and prune

(Upper bound on) Marginal gain  $\Delta_1$ 



 $A_1 = \{a\}$ 



$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
  $A \subseteq B$ 

#### Lazy Greedy

#### Idea:

- Use  $\Delta_i$  as upper-bound on  $\Delta_j$  (j > i)
- Lazy Greedy:
  - Keep an ordered list of marginal benefits  $\Delta_i$  from previous iteration
  - Re-evaluate  $\Delta_i$  only for top node
  - Re-sort and prune

Upper bound on Marginal gain  $\Delta_2$ 



 $A_1 = \{a\}$ 







$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
  $A \subseteq B$ 

#### Lazy Greedy

#### Idea:

- Use  $\Delta_i$  as upper-bound on  $\Delta_j$  (j > i)
- Lazy Greedy:
  - Keep an ordered list of marginal benefits  $\Delta_i$  from previous iteration
  - Re-evaluate  $\Delta_i$  only for top node
  - Re-sort and prune

Upper bound on Marginal gain  $\Delta_2$ 

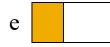


 $A_1 = \{a\}$ 



 $A_2 = \{a,b\}$ 

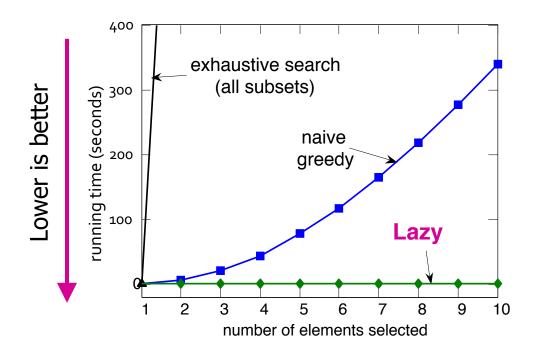




$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$$

#### Speed Up of Lazy Greedy Algorithm

 Lazy greedy offers significant speed-up over traditional greedy implementations in practice.



#### References

- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015
- Leskovec et. al., Cost-effective Outbreak
   Detection in Networks, KDD 2007
- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- ICML Tutorial: http://submodularity.org/submodularity-icmlpart1-slides-prelim.pdf
- Learning and Testing Submodular Functions: http://grigory.us/cis625/lecture3.pdf