
Announcements:
• HW4 due Saturday
• Dataset survey (mandatory)
• June 4 – Extra Project Office Hours (optional)
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¡ In many data mining situations, we do not 
know the entire data set in advance

¡ Stream Management is important when 
the input rate is controlled externally:
§ Google queries
§ Twitter or Facebook status updates

¡ We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)
§ This is the fun part and why interesting 

algorithms are needed
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¡ Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
§ We call elements of the stream tuples

¡ The system cannot store the entire stream 
accessibly

¡ Q: How do you make critical calculations 
about the stream using a limited amount of 
(secondary) memory?
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¡ Stochastic Gradient Descent (SGD) is an 
example of a stream algorithm

¡ In Machine Learning we call this: Online Learning
§ Allows for modeling problems where we have 

a continuous stream of data 
§ We want an algorithm to learn from it and 

slowly adapt to the changes in data
¡ Idea: Do small updates to the model

§ SGD (SVM, Perceptron) makes small updates
§ So: First train the classifier on training data
§ Then: For every example from the stream, we slightly 

update the model (using small learning rate)

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5



5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . .   a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each stream is 
composed of 

elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries



¡ Types of queries one wants on answer on 
a data stream: (we’ll do these today)
§ Sampling data from a stream

§ Construct a random sample

§ Queries over sliding windows
§ Number of items of type x in the last k elements 

of the stream
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¡ Types of queries one wants on answer on 
a data stream: (we’ll do these on Thu)
§ Filtering a data stream

§ Select elements with property x from the stream

§ Counting distinct elements
§ Number of distinct elements in the last k elements 

of the stream

§ Estimating moments
§ Estimate avg./std. dev. of elements in stream

§ Finding frequent elements
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¡ Mining query streams
§ Google wants to know what queries are 

more frequent today than yesterday

¡ Mining click streams
§ Wikipedia wants to know which of its pages are 

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ Look for trending topics on Twitter, Facebook
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¡ Sensor Networks 
§ Many sensors feeding into a central controller

¡ Telephone call records 
§ Data feeds into customer bills as well as 

settlements between telephone companies
¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks

¡ Large-scale machine learning models
§ Get summary statistics of data for candidate splits 

in decision tree model (e.g. Xgboost)
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As the stream grows the sample 
also gets bigger



¡ Since we can not store the entire stream, 
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size 

over a potentially infinite stream
§ At any “time” k we would like a random sample 

of s elements
§ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has 
equal prob. of being sampled
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¡ Problem 1: Sampling fixed proportion
¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Answer questions such as: How often did a user 

run the same query in a single day
§ Have space to store 1/10th of query stream

¡ Naïve solution:
§ Generate a random integer in [0...9] for each query
§ Store the query if the integer is 0, otherwise discard  
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¡ Simple question: What fraction of unique queries 
by an average search engine user are duplicates?
§ Suppose each user issues x queries once and d queries 

twice (total of x+2d query instances)
§ Correct answer: d/(x+d)

§ Proposed solution: We keep 10% of the queries
§ Sample will contain x/10 of the singleton queries and 

2d/10 of the duplicate queries at least once
§ But only d/100 pairs of duplicates

§ d/100 = 1/10 · 1/10 · d
§ Of d “duplicates” 18d/100 appear exactly once

§ 18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d

§ So the sample-based answer is 
!
"##

$
"#%

!
"##%

"&!
"##

= 𝒅
𝟏𝟎𝒙%𝟏𝟗𝒅
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Solution:
¡ Pick 1/10th of users and take all their 

searches in the sample

¡ Use a hash function that hashes the 
user name or user id uniformly into 10 
buckets
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¡ Stream of tuples with keys:
§ Key is some subset of each tuple’s components

§ e.g., tuple is (user, search, time); key is user

§ Choice of key depends on application

¡ To get a sample of a/b fraction of the stream:
§ Hash each tuple’s key uniformly into b buckets
§ Pick the tuple if its hash value is at most a
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Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets



As the stream grows, the sample is of 
fixed size



¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose by time n we have seen n items
§ Each item is in the sample S with equal prob. s/n
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How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now 

the nth element arrives (𝒏 > 𝒔)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the 

s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each 

element seen so far with probability s/n
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¡ We prove this by induction:
§ Assume that after n elements, the sample contains 

each element seen so far with probability s/n
§ We need to show that after seeing element n+1 

the sample maintains the property
§ Sample contains each element seen so far with 

probability s/(n+1)
¡ Base case:
§ After we see n=s elements the sample S has the 

desired property
§ Each out of n=s elements is in the sample with 

probability s/s = 1

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20



¡ Inductive hypothesis: After n elements, the sample 
S contains each element seen so far with prob. s/n

¡ Now element n+1 arrives
¡ Inductive step: For elements already in S, 

probability that the algorithm keeps it in S is:

¡ So, at time n, tuples in S were there with prob. s/n
¡ Time n®n+1, tuple stayed in S with prob. n/(n+1)
¡ So prob. tuple is in S at time n+1 = 𝒔

𝒏
⋅ 𝒏
𝒏%𝟏

= 𝒔
𝒏%𝟏
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¡ A useful model of stream processing is that 
queries are about a window of length N –
the N most recent elements received

¡ Interesting case: N is so large that the data 
cannot be stored in memory, or even on disk
§ Or, there are so many streams that windows 

for all cannot be stored
¡ Amazon example: 

§ For every product X we keep 0/1 stream of whether 
that product was sold in the n-th transaction

§ We want answer queries, how many times have we 
sold X in the last k sales
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¡ Sliding window on a single stream:
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¡ Problem:
§ Given a stream of 0s and 1s
§ Be prepared to answer queries of the form 

How many 1s are in the last k bits? For any k≤ N

¡ Obvious solution: 
Store the most recent N bits
§ When new bit comes in, discard the N+1st bit
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¡ You can not get an exact answer without 
storing the entire window

¡ Real Problem:
What if we cannot afford to store N bits?
§ We’re processing many such streams and for each 

N=1B

¡ But we are happy with an approximate 
answer
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¡ Q: How many 1s are in the last N bits?
¡ A simple solution that does not really solve 

our problem: Uniformity assumption

¡ Maintain 2 counters: 
§ S: number of 1s from the beginning of the stream
§ Z: number of 0s from the beginning of the stream

¡ How many 1s are in the last N bits? 𝑵 2 𝑺
𝑺%𝒁

¡ But, what if stream is non-uniform?
§ What if distribution changes over time?

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past                  Future



¡ DGIM solution that does not assume 
uniformity

¡ We store 𝑶(log𝟐𝑵) bits per stream

¡ Solution gives approximate answer, 
never off by more than 50%
§ Error factor can be reduced to any fraction > 0, 

with more complicated algorithm and 
proportionally more stored bits
§ Error: If we have 10 1s then 50% error means 10 +/- 5
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[Datar, Gionis, Indyk, Motwani]



¡ Solution that doesn’t (quite) work:
§ Summarize exponentially increasing regions 

of the stream, looking backward
§ Drop small regions if they begin at the same point 

as a larger region
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¡ Stores only O(log2N ) bits
§ 𝑶(log𝑵) counts of log𝟐𝑵 bits each

¡ Easy update as more bits enter

¡ Error in count no greater than the number 
of 1s in the “unknown” area
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¡ As long as the 1s are fairly evenly distributed, 
the error due to the unknown region is small 
– no more than 50%

¡ But it could be that all the 1s are in the 
unknown area at the end

¡ In that case, the error is unbounded!
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¡ Idea: Instead of summarizing fixed-length 
blocks, summarize blocks with specific 
number of 1s:
§ Let the block sizes (number of 1s) increase 

exponentially

¡ When there are few 1s in the window, block 
sizes stay small, so errors are small
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¡ Each bit in the stream has a timestamp, 
starting 1, 2, …

¡ Record timestamps modulo N (the window 
size), so we can represent any relevant
timestamp in 𝑶(𝒍𝒐𝒈𝟐𝑵) bits
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¡ A bucket in the DGIM method is a record 
consisting of:
§ (A) The timestamp of its end [O(log N) bits]
§ (B) The number of 1s between its beginning and 

end [O(log log N) bits]

¡ Constraint on buckets:
Number of 1s must be a power of 2

§ That explains the O(log log N) in (B) above
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¡ Either one or two buckets with the same 
power-of-2 number of 1s

¡ Buckets do not overlap in timestamps

¡ Buckets are sorted by size
§ Earlier buckets are not smaller than later buckets

¡ Buckets disappear when their 
end-time is > N time units in the past
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Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size



¡ When a new bit comes in, drop the last 
(oldest) bucket if its end-time is prior to N
time units before the current time

¡ 2 cases: Current bit is 0 or 1

¡ If the current bit is 0:
no other changes are needed
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¡ If the current bit is 1:
§ (1) Create a new bucket of size 1, for just this bit
§ End timestamp = current time

§ (2) If there are now three buckets of size 1, 
combine the oldest two into a bucket of size 2

§ (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

§ (4) And so on …
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Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging



¡ To estimate the number of 1s in the most 
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

¡ Remember: We do not know how many 1s 
of the last bucket are still within the wanted 
window
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Estimate for the number of ones in window of size N is: 
1 + 1 + 2 + 4 + 4 + 8 + 8 + 16/2



¡ Why is error at most 50%? Let’s prove it!
¡ Suppose the last bucket has size 2r

¡ Worst case overestimate: All the 1s in the 
bucket are outside of window (except 
rightmost) - we make an error of at most 2r-1

¡ Since there is at least one bucket of each of 
the sizes less than 2r, the true sum is at least 
1 + 2 + 4 + .. + 2r-1 = 2r -1

¡ Thus, error at most 50%
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¡ Instead of maintaining 1 or 2 of each size 
bucket, we allow either r-1 or r buckets  (r > 2)
§ Except for the largest size buckets; we can have 

any number between 1 and r of those
¡ Error is at most O(1/r)
¡ By picking r appropriately, we can tradeoff 

between number of bits we store and the 
error
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¡ Can we use the same trick to answer queries 
How many 1’s in the last k? where k < N?
§ A: Find earliest bucket B that at overlaps with k.

Number of 1s is the sum of sizes of more recent 
buckets + ½ size of B

¡ Can we handle the case where the stream is 
not bits, but integers, and we want the sum 
of the last k elements?
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¡ Stream of positive integers
¡ We want the sum of the last k elements

§ Amazon: Avg. price of last k sales
¡ Solution:

§ (1) If you know all have at most m bits
§ Treat m bits of each integer as a separate stream
§ Use DGIM to count 1s in each integer/stream
§ The sum is = ∑@ABCDE 𝑐@2@

§ (2) Use buckets to keep partial sums
§ Sum of elements in size b bucket is at most 2b

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45
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has only 1 integer)
Max bucket sum:
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¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Counting the number of 1s in the last N 
elements
§ Exponentially increasing windows
§ Extensions:

§ Number of 1s in any last k (k < N) elements
§ Sums of integers in the last N elements
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¡ New Problem: Given a stream, which items 
appear more than s times in the window?

¡ Possible solution: Think of the stream of 
baskets as one binary stream per item
§ 1 = item present; 0 = not present
§ Use DGIM to estimate counts of 1s for all items
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¡ In principle, you could count frequent pairs 
or even larger sets the same way
§ One stream per itemset

¡ Drawbacks:
§ Only approximate
§ Number of itemsets is way too big
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¡ Exponentially decaying windows: A heuristic 
for selecting likely frequent item(sets)
§ What are “currently” most popular movies?

§ Instead of computing the raw count in last N elements
§ Compute a smooth aggregation over the whole stream

¡ If stream is a1, a2,… and we are taking the sum 
of the stream, take the answer at time t to be: 
= ∑𝒊A𝟏𝒕 𝒂𝒊 𝟏 − 𝒄 𝒕D𝒊

§ c is a constant, presumably tiny, like 10-6 or 10-9

¡ When new at+1 arrives: 
Multiply current sum by (1-c) and add at+1
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¡ If each ai is an “item” we can compute the 
characteristic function of each possible 
item x as an Exponentially Decaying Window
§ That is: ∑𝒊A𝟏𝒕 𝜹𝒊 ⋅ 𝟏 − 𝒄 𝒕D𝒊

where δi=1 if ai=x, and 0 otherwise
§ Imagine that for each item x we have a binary 

stream (1 if x appears, 0 if x does not appear)
§ New item x arrives:

§ Multiply all counts by (1-c)
§ Add +1 to count for element x

¡ Call this sum the “weight” of item x
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¡ Important property: Sum over all weights 
∑𝒕 𝟏 − 𝒄 𝒕 is 1/[1 – (1 – c)] = 1/c
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¡ What are “currently” most popular movies?
¡ Suppose we want to find movies of weight > ½
§ Important property: Sum over all weights 
∑N 1 − 𝑐 N is 1/[1 – (1 – c)] = 1/c

¡ Thus:
§ There cannot be more than 2/c movies with 

weight of ½ or more
¡ So, 2/c is a limit on the number of 

movies being counted at any time
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¡ Count (some) itemsets in an E.D.W.
§ What are currently “hot” itemsets?

§ Problem: Too many itemsets to keep counts of 
all of them in memory

¡ When a basket B comes in:
§ Multiply all counts by (1-c)
§ For uncounted items in B, create new count
§ Add 1 to count of any item in B and to any itemset

contained in B that is already being counted
§ Drop counts < ½
§ Initiate new counts (next slide)
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¡ Start a count for an itemset S ⊆ B if every 
proper subset of S had a count prior to arrival 
of basket B
§ Intuitively: If all subsets of S are being counted 

this means they are “frequent/hot” and thus S has 
a potential to be “hot”

¡ Example:
§ Start counting S={i, j} iff both i and j were counted 

prior to seeing B
§ Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}

were all counted prior to seeing B
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¡ Counts for single items <  (2/c)·(avg. number 
of items in a basket)

¡ Number of larger itemsets is very large

¡ But we are conservative about starting 
counts of large sets
§ If we counted every set we saw, one basket 

of 20 items would initiate 1M counts (2^20)
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