
Announcements:
• HW4 due Saturday
• Dataset survey (mandatory)
• June 4 – Extra Project Office Hours (optional)



High dim. 
data

Locality 
sensitive 
hashing

Clustering

Dimensional
ity 

reduction

Graph 
data

PageRank, 
SimRank

Community 
Detection

Spam 
Detection

Infinite 
data

Sampling 
data 

streams

Filtering 
data 

streams

Queries on 
streams

Machine 
learning

Decision 
Trees

SVM

Parallel SGD

Apps

Recommen
der systems

Association 
Rules

Duplicate 
document 
detection

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2



¡ In many data mining situations, we do not 
know the entire data set in advance

¡ Stream Management is important when 
the input rate is controlled externally:
§ Google queries
§ Twitter or Facebook status updates

¡ We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)
§ This is the fun part and why interesting 

algorithms are needed
5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3



¡ Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
§ We call elements of the stream tuples

¡ The system cannot store the entire stream 
accessibly

¡ Q: How do you make critical calculations 
about the stream using a limited amount of 
(secondary) memory?

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4



¡ Stochastic Gradient Descent (SGD) is an 
example of a stream algorithm

¡ In Machine Learning we call this: Online Learning
§ Allows for modeling problems where we have 

a continuous stream of data 
§ We want an algorithm to learn from it and 

slowly adapt to the changes in data
¡ Idea: Do small updates to the model

§ SGD (SVM, Perceptron) makes small updates
§ So: First train the classifier on training data
§ Then: For every example from the stream, we slightly 

update the model (using small learning rate)

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5



5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . .   a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each stream is 
composed of 

elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries



¡ Types of queries one wants on answer on 
a data stream: (we’ll do these today)
§ Sampling data from a stream

§ Construct a random sample

§ Queries over sliding windows
§ Number of items of type x in the last k elements 

of the stream

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7



¡ Types of queries one wants on answer on 
a data stream: (we’ll do these on Thu)
§ Filtering a data stream

§ Select elements with property x from the stream

§ Counting distinct elements
§ Number of distinct elements in the last k elements 

of the stream

§ Estimating moments
§ Estimate avg./std. dev. of elements in stream

§ Finding frequent elements

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8



¡ Mining query streams
§ Google wants to know what queries are 

more frequent today than yesterday

¡ Mining click streams
§ Wikipedia wants to know which of its pages are 

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ Look for trending topics on Twitter, Facebook

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9



¡ Sensor Networks 
§ Many sensors feeding into a central controller

¡ Telephone call records 
§ Data feeds into customer bills as well as 

settlements between telephone companies
¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks

¡ Large-scale machine learning models
§ Get summary statistics of data for candidate splits 

in decision tree model (e.g. Xgboost)

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10



As the stream grows the sample 
also gets bigger



¡ Since we can not store the entire stream, 
one obvious approach is to store a sample

¡ Two different problems:
§ (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size 

over a potentially infinite stream
§ At any “time” k we would like a random sample 

of s elements
§ What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has 
equal prob. of being sampled

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12



¡ Problem 1: Sampling fixed proportion
¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Answer questions such as: How often did a user 

run the same query in a single day
§ Have space to store 1/10th of query stream

¡ Naïve solution:
§ Generate a random integer in [0...9] for each query
§ Store the query if the integer is 0, otherwise discard  

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13



¡ Simple question: What fraction of unique queries 
by an average search engine user are duplicates?
§ Suppose each user issues x queries once and d queries 

twice (total of x+2d query instances)
§ Correct answer: d/(x+d)

§ Proposed solution: We keep 10% of the queries
§ Sample will contain x/10 of the singleton queries and 

2d/10 of the duplicate queries at least once
§ But only d/100 pairs of duplicates

§ d/100 = 1/10 · 1/10 · d
§ Of d “duplicates” 18d/100 appear exactly once

§ 18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d

§ So the sample-based answer is 
!
"##

$
"#%

!
"##%

"&!
"##

= 𝒅
𝟏𝟎𝒙%𝟏𝟗𝒅

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14



Solution:
¡ Pick 1/10th of users and take all their 

searches in the sample

¡ Use a hash function that hashes the 
user name or user id uniformly into 10 
buckets

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 15



¡ Stream of tuples with keys:
§ Key is some subset of each tuple’s components

§ e.g., tuple is (user, search, time); key is user

§ Choice of key depends on application

¡ To get a sample of a/b fraction of the stream:
§ Hash each tuple’s key uniformly into b buckets
§ Pick the tuple if its hash value is at most a

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets



As the stream grows, the sample is of 
fixed size



¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose by time n we have seen n items
§ Each item is in the sample S with equal prob. s/n

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now 

the nth element arrives (𝒏 > 𝒔)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the 

s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each 

element seen so far with probability s/n
5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 19



¡ We prove this by induction:
§ Assume that after n elements, the sample contains 

each element seen so far with probability s/n
§ We need to show that after seeing element n+1 

the sample maintains the property
§ Sample contains each element seen so far with 

probability s/(n+1)
¡ Base case:
§ After we see n=s elements the sample S has the 

desired property
§ Each out of n=s elements is in the sample with 

probability s/s = 1

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20



¡ Inductive hypothesis: After n elements, the sample 
S contains each element seen so far with prob. s/n

¡ Now element n+1 arrives
¡ Inductive step: For elements already in S, 

probability that the algorithm keeps it in S is:

¡ So, at time n, tuples in S were there with prob. s/n
¡ Time n®n+1, tuple stayed in S with prob. n/(n+1)
¡ So prob. tuple is in S at time n+1 = 𝒔

𝒏
⋅ 𝒏
𝒏%𝟏

= 𝒔
𝒏%𝟏

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 21

1
1

11
1

+
=÷

ø
ö

ç
è
æ -
÷
ø
ö

ç
è
æ

+
+÷
ø
ö

ç
è
æ

+
-

n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the 
sample not picked





¡ A useful model of stream processing is that 
queries are about a window of length N –
the N most recent elements received

¡ Interesting case: N is so large that the data 
cannot be stored in memory, or even on disk
§ Or, there are so many streams that windows 

for all cannot be stored
¡ Amazon example: 

§ For every product X we keep 0/1 stream of whether 
that product was sold in the n-th transaction

§ We want answer queries, how many times have we 
sold X in the last k sales

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23



¡ Sliding window on a single stream:

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past                   Future

N = 6



¡ Problem:
§ Given a stream of 0s and 1s
§ Be prepared to answer queries of the form 

How many 1s are in the last k bits? For any k≤ N

¡ Obvious solution: 
Store the most recent N bits
§ When new bit comes in, discard the N+1st bit

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past                              Future

Suppose N=6



¡ You can not get an exact answer without 
storing the entire window

¡ Real Problem:
What if we cannot afford to store N bits?
§ We’re processing many such streams and for each 

N=1B

¡ But we are happy with an approximate 
answer

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0
Past                  Future



¡ Q: How many 1s are in the last N bits?
¡ A simple solution that does not really solve 

our problem: Uniformity assumption

¡ Maintain 2 counters: 
§ S: number of 1s from the beginning of the stream
§ Z: number of 0s from the beginning of the stream

¡ How many 1s are in the last N bits? 𝑵 2 𝑺
𝑺%𝒁

¡ But, what if stream is non-uniform?
§ What if distribution changes over time?

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past                  Future



¡ DGIM solution that does not assume 
uniformity

¡ We store 𝑶(log𝟐𝑵) bits per stream

¡ Solution gives approximate answer, 
never off by more than 50%
§ Error factor can be reduced to any fraction > 0, 

with more complicated algorithm and 
proportionally more stored bits
§ Error: If we have 10 1s then 50% error means 10 +/- 5

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

[Datar, Gionis, Indyk, Motwani]



¡ Solution that doesn’t (quite) work:
§ Summarize exponentially increasing regions 

of the stream, looking backward
§ Drop small regions if they begin at the same point 

as a larger region

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

?

01
12

23
4

106

We can reconstruct the count of the last N bits, except we 
are not sure how many of the last 6 1s are included in the N

Window of 
width 16 
has 6 1s

There are 4+2+1 1s here
There are 10+2+1 1s here



¡ Stores only O(log2N ) bits
§ 𝑶(log𝑵) counts of log𝟐𝑵 bits each

¡ Easy update as more bits enter

¡ Error in count no greater than the number 
of 1s in the “unknown” area

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 30



¡ As long as the 1s are fairly evenly distributed, 
the error due to the unknown region is small 
– no more than 50%

¡ But it could be that all the 1s are in the 
unknown area at the end

¡ In that case, the error is unbounded!

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
01

12
23

4
106

N

?



¡ Idea: Instead of summarizing fixed-length 
blocks, summarize blocks with specific 
number of 1s:
§ Let the block sizes (number of 1s) increase 

exponentially

¡ When there are few 1s in the window, block 
sizes stay small, so errors are small

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

1001010110001011010101010101011010101010101110101010111010100010110010
N

[Datar, Gionis, Indyk, Motwani]



¡ Each bit in the stream has a timestamp, 
starting 1, 2, …

¡ Record timestamps modulo N (the window 
size), so we can represent any relevant
timestamp in 𝑶(𝒍𝒐𝒈𝟐𝑵) bits

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33



¡ A bucket in the DGIM method is a record 
consisting of:
§ (A) The timestamp of its end [O(log N) bits]
§ (B) The number of 1s between its beginning and 

end [O(log log N) bits]

¡ Constraint on buckets:
Number of 1s must be a power of 2

§ That explains the O(log log N) in (B) above

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 34

1001010110001011010101010101011010101010101110101010111010100010110010
N



¡ Either one or two buckets with the same 
power-of-2 number of 1s

¡ Buckets do not overlap in timestamps

¡ Buckets are sorted by size
§ Earlier buckets are not smaller than later buckets

¡ Buckets disappear when their 
end-time is > N time units in the past

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35



5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16.  Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size



¡ When a new bit comes in, drop the last 
(oldest) bucket if its end-time is prior to N
time units before the current time

¡ 2 cases: Current bit is 0 or 1

¡ If the current bit is 0:
no other changes are needed

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37



¡ If the current bit is 1:
§ (1) Create a new bucket of size 1, for just this bit
§ End timestamp = current time

§ (2) If there are now three buckets of size 1, 
combine the oldest two into a bucket of size 2

§ (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

§ (4) And so on …

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38



5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging



¡ To estimate the number of 1s in the most 
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

¡ Remember: We do not know how many 1s 
of the last bucket are still within the wanted 
window

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40



5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16.  Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Estimate for the number of ones in window of size N is: 
1 + 1 + 2 + 4 + 4 + 8 + 8 + 16/2



¡ Why is error at most 50%? Let’s prove it!
¡ Suppose the last bucket has size 2r

¡ Worst case overestimate: All the 1s in the 
bucket are outside of window (except 
rightmost) - we make an error of at most 2r-1

¡ Since there is at least one bucket of each of 
the sizes less than 2r, the true sum is at least 
1 + 2 + 4 + .. + 2r-1 = 2r -1

¡ Thus, error at most 50%

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

111111110000000011101010101011010101010101110101010111010100010110010
N

At least 16 1s



¡ Instead of maintaining 1 or 2 of each size 
bucket, we allow either r-1 or r buckets  (r > 2)
§ Except for the largest size buckets; we can have 

any number between 1 and r of those
¡ Error is at most O(1/r)
¡ By picking r appropriately, we can tradeoff 

between number of bits we store and the 
error

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43



¡ Can we use the same trick to answer queries 
How many 1’s in the last k? where k < N?
§ A: Find earliest bucket B that at overlaps with k.

Number of 1s is the sum of sizes of more recent 
buckets + ½ size of B

¡ Can we handle the case where the stream is 
not bits, but integers, and we want the sum 
of the last k elements?

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 44

1001010110001011010101010101011010101010101110101010111010100010110010
k



2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3
2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3  3
2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3  3  2
2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  3  3  2  5

¡ Stream of positive integers
¡ We want the sum of the last k elements

§ Amazon: Avg. price of last k sales
¡ Solution:

§ (1) If you know all have at most m bits
§ Treat m bits of each integer as a separate stream
§ Use DGIM to count 1s in each integer/stream
§ The sum is = ∑@ABCDE 𝑐@2@

§ (2) Use buckets to keep partial sums
§ Sum of elements in size b bucket is at most 2b

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

ci …estimated 
count for i-th bit

Idea: Sum in each 
bucket is at most 
2b (unless bucket 
has only 1 integer)
Max bucket sum:

12816 4



¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Counting the number of 1s in the last N 
elements
§ Exponentially increasing windows
§ Extensions:

§ Number of 1s in any last k (k < N) elements
§ Sums of integers in the last N elements

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 46



5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47





¡ New Problem: Given a stream, which items 
appear more than s times in the window?

¡ Possible solution: Think of the stream of 
baskets as one binary stream per item
§ 1 = item present; 0 = not present
§ Use DGIM to estimate counts of 1s for all items

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49
N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16.  Partially
beyond window.

2 of
size 1

1001010110001011010101010101011010101010101110101010111010100010110010



¡ In principle, you could count frequent pairs 
or even larger sets the same way
§ One stream per itemset

¡ Drawbacks:
§ Only approximate
§ Number of itemsets is way too big

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50



¡ Exponentially decaying windows: A heuristic 
for selecting likely frequent item(sets)
§ What are “currently” most popular movies?

§ Instead of computing the raw count in last N elements
§ Compute a smooth aggregation over the whole stream

¡ If stream is a1, a2,… and we are taking the sum 
of the stream, take the answer at time t to be: 
= ∑𝒊A𝟏𝒕 𝒂𝒊 𝟏 − 𝒄 𝒕D𝒊

§ c is a constant, presumably tiny, like 10-6 or 10-9

¡ When new at+1 arrives: 
Multiply current sum by (1-c) and add at+1

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51



¡ If each ai is an “item” we can compute the 
characteristic function of each possible 
item x as an Exponentially Decaying Window
§ That is: ∑𝒊A𝟏𝒕 𝜹𝒊 ⋅ 𝟏 − 𝒄 𝒕D𝒊

where δi=1 if ai=x, and 0 otherwise
§ Imagine that for each item x we have a binary 

stream (1 if x appears, 0 if x does not appear)
§ New item x arrives:

§ Multiply all counts by (1-c)
§ Add +1 to count for element x

¡ Call this sum the “weight” of item x
5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52



¡ Important property: Sum over all weights 
∑𝒕 𝟏 − 𝒄 𝒕 is 1/[1 – (1 – c)] = 1/c

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

1/c

. . .



¡ What are “currently” most popular movies?
¡ Suppose we want to find movies of weight > ½
§ Important property: Sum over all weights 
∑N 1 − 𝑐 N is 1/[1 – (1 – c)] = 1/c

¡ Thus:
§ There cannot be more than 2/c movies with 

weight of ½ or more
¡ So, 2/c is a limit on the number of 

movies being counted at any time

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 54



¡ Count (some) itemsets in an E.D.W.
§ What are currently “hot” itemsets?

§ Problem: Too many itemsets to keep counts of 
all of them in memory

¡ When a basket B comes in:
§ Multiply all counts by (1-c)
§ For uncounted items in B, create new count
§ Add 1 to count of any item in B and to any itemset

contained in B that is already being counted
§ Drop counts < ½
§ Initiate new counts (next slide)

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 55



¡ Start a count for an itemset S ⊆ B if every 
proper subset of S had a count prior to arrival 
of basket B
§ Intuitively: If all subsets of S are being counted 

this means they are “frequent/hot” and thus S has 
a potential to be “hot”

¡ Example:
§ Start counting S={i, j} iff both i and j were counted 

prior to seeing B
§ Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}

were all counted prior to seeing B

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 56



¡ Counts for single items <  (2/c)·(avg. number 
of items in a basket)

¡ Number of larger itemsets is very large

¡ But we are conservative about starting 
counts of large sets
§ If we counted every set we saw, one basket 

of 20 items would initiate 1M counts (2^20)

5/27/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 57


