Announcements:
• HW4 due Saturday
• Dataset survey (mandatory)
• June 4 – Extra Project Office Hours (optional)

Mining Data Streams (Part 1)
New Topic: Infinite Data

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Sampling data streams
- Filtering data streams
- Queries on streams

Machine learning
- Decision Trees
- SVM
- Parallel SGD

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Data Streams

- In many data mining situations, we do not know the entire data set in advance.
- **Stream Management** is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as **infinite** and **non-stationary** (the distribution changes over time).
 - This is the fun part and why interesting algorithms are needed.
The Stream Model

- **Input elements** enter at a rapid rate, at one or more input ports (i.e., **streams**)
 - **We call elements of the stream tuples**

- The system cannot store the entire stream accessibly

- **Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?**
Side note: SGD is a Streaming Alg.

- **Stochastic Gradient Descent (SGD) is an example of a stream algorithm**
- In Machine Learning we call this: **Online Learning**
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data
- **Idea: Do small updates to the model**
 - **SGD** (SVM, Perceptron) makes small updates
 - **So:** First train the classifier on training data
 - **Then:** For every example from the stream, we slightly update the model (using small learning rate)
Streams Entering. Each stream is composed of elements/tuples.

... 1, 5, 2, 7, 0, 9, 3
... a, r, v, t, y, h, b
... 0, 0, 1, 0, 1, 1, 0

time

General Stream Processing Model

Limited Working Storage

Ad-Hoc Queries

Archival Storage

Output

Processor

Standing Queries
Types of queries one wants on answer on a data stream: (we’ll do these today)

- Sampling data from a stream
 - Construct a random sample
- Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
Problems on Data Streams

- **Types of queries one wants on answer on a data stream:** (we’ll do these on Thu)
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of elements in stream
 - Finding frequent elements
Applications (1)

- **Mining query streams**
 - Google wants to know what queries are more frequent today than yesterday

- **Mining click streams**
 - Wikipedia wants to know which of its pages are getting an unusual number of hits in the past hour

- **Mining social network news feeds**
 - Look for trending topics on Twitter, Facebook
Applications (2)

- **Sensor Networks**
 - Many sensors feeding into a central controller

- **Telephone call records**
 - Data feeds into customer bills as well as settlements between telephone companies

- **IP packets monitored at a switch**
 - Gather information for optimal routing
 - Detect denial-of-service attacks

- **Large-scale machine learning models**
 - Get summary statistics of data for candidate splits in decision tree model (e.g. Xgboost)
Sampling from a Data Stream: Sampling a fixed proportion

As the stream grows the sample also gets bigger
Sampling from a Data Stream

- Since **we can not store the entire stream**, one obvious approach is to store a **sample**

- **Two different problems:**
 - (1) Sample a **fixed proportion** of elements in the stream (say 1 in 10)
 - (2) Maintain a **random sample of fixed size** over a potentially infinite stream
 - At any “time” \(k \) we would like a random sample of \(s \) elements
 - **What is the property of the sample we want to maintain?**
 For all time steps \(k \), each of \(k \) elements seen so far has equal prob. of being sampled
Problem 1: Sampling fixed proportion

Scenario: Search engine query stream

- Stream of tuples: (user, query, time)
- Answer questions such as: How often did a user run the same query in a single day
- Have space to store $1/10^{th}$ of query stream

Naïve solution:

- Generate a random integer in $[0...9]$ for each query
- Store the query if the integer is 0, otherwise discard
Problem with Naïve Approach

- **Simple question:** What fraction of unique queries by an average search engine user are duplicates?
 - Suppose each user issues \(x \) queries once and \(d \) queries twice (total of \(x + 2d \) query instances)
 - Correct answer: \(\frac{d}{x+d} \)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain \(\frac{x}{10} \) of the singleton queries and \(\frac{2d}{10} \) of the duplicate queries at least once
 - But only \(\frac{d}{100} \) pairs of duplicates
 - \(\frac{d}{100} = \frac{1}{10} \cdot \frac{1}{10} \cdot d \)
 - Of \(d \) “duplicates” \(\frac{18d}{100} \) appear exactly once
 - \(\frac{18d}{100} = (\frac{1}{10} \cdot \frac{9}{10} + \frac{9}{10} \cdot \frac{1}{10}) \cdot d \)
 - So the sample-based answer is \(\frac{\frac{d}{100}}{x + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d} \)
Solution: Sample Users

Solution:

- Pick $\frac{1}{10}$th of users and take all their searches in the sample

- Use a hash function that hashes the user name or user id uniformly into 10 buckets
Generalized Solution

- **Stream of tuples with keys:**
 - Key is some subset of each tuple’s components
 - e.g., tuple is (user, search, time); key is **user**
 - Choice of key depends on application

- **To get a sample of a/b fraction of the stream:**
 - Hash each tuple’s key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample?
Hash into $b=10$ buckets, take the tuple if it hashes to one of the first 3 buckets.
Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of fixed size
Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
 - Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
 - **Why?** Don’t know length of stream in advance
 - Suppose by time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say $s = 2$
Stream: $\{a, x, c, y, z, k, c, d, e, g, \ldots\}$

At $n=5$, each of the first 5 tuples is included in the sample S with equal prob.
At $n=7$, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen so far and out of them pick s at random
Solution: Fixed Size Sample

- **Algorithm (a.k.a. Reservoir Sampling)**
 - Store all the first s elements of the stream to S
 - Suppose we have seen $n-1$ elements, and now the n^{th} element arrives ($n > s$)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample S, picked uniformly at random

- **Claim:** This algorithm maintains a sample S with the desired property:
 - After n elements, the sample contains each element seen so far with probability s/n
Proof: By Induction

- **We prove this by induction:**
 - Assume that after n elements, the sample contains each element seen so far with probability s/n
 - We need to show that after seeing element $n+1$ the sample maintains the property
 - Sample contains each element seen so far with probability $s/(n+1)$

- **Base case:**
 - After we see $n=s$ elements the sample S has the desired property
 - Each out of $n=s$ elements is in the sample with probability $s/s = 1$
Proof: By Induction

- **Inductive hypothesis:** After \(n \) elements, the sample \(S \) contains each element seen so far with prob. \(s/n \)
- **Now element \(n+1 \) arrives**
- **Inductive step:** For elements already in \(S \), probability that the algorithm keeps it in \(S \) is:
 \[
 \left(1 - \frac{s}{n+1} \right) + \left(\frac{s}{n+1} \right) \left(\frac{s-1}{s} \right) = \frac{n}{n+1}
 \]

 - Element \(n+1 \) discarded
 - Element \(n+1 \) not discarded
 - Element in the sample not picked
- So, at time \(n \), tuples in \(S \) were there with prob. \(s/n \)
- Time \(n \to n+1 \), tuple stayed in \(S \) with prob. \(n/(n+1) \)
- So prob. tuple is in \(S \) at time \(n+1 \) = \(\frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1} \)
Queries over a (long) Sliding Window
Sliding Windows

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received

- **Interesting case:** N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored

- **Amazon example:**
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold X in the last k sales
Sliding Window: 1 Stream

- Sliding window on a single stream: \(N = 6 \)

\[
\text{Past} \quad \text{Future}
\]

\[
\text{q w e r t y u i o p a s d f g h j k l z x c v b n m}
\]

\[
\text{q w e r t y u i o p a s d f g h j k l z x c v b n m}
\]

\[
\text{q w e r t y u i o p a s d f g h j k l z x c v b n m}
\]

\[
\text{q w e r t y u i o p a s d f g h j k l z x c v b n m}
\]
Counting Bits (1)

- **Problem:**
 - Given a stream of 0s and 1s
 - Be prepared to answer queries of the form
 How many 1s are in the last \(k \) bits? For any \(k \leq N \)

- **Obvious solution:**
 - Store the most recent \(N \) bits
 - When new bit comes in, discard the \(N+1^{st} \) bit

Suppose \(N=6 \):

\[
0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0
\]

\(1 1 0 1 1 0 \)

Past Future
Counting Bits (2)

- You can not get an exact answer without storing the entire window

- **Real Problem:**
 What if we cannot afford to store \(N \) bits?
 - We’re processing many such streams and for each \(N=1\text{B} \)

- But we are happy with an approximate answer
An attempt: Simple solution

- **Q:** How many 1s are in the last \(N \) bits?
 - A simple solution that does not really solve our problem: **Uniformity assumption**

- **Maintain 2 counters:**
 - \(S \): number of 1s from the beginning of the stream
 - \(Z \): number of 0s from the beginning of the stream

- **How many 1s are in the last \(N \) bits?** \(N \cdot \frac{S}{S+Z} \)

- **But, what if stream is non-uniform?**
 - What if distribution changes over time?
DGIM Method

- DGIM solution that does **not** assume uniformity

- We store $O(\log^2 N)$ bits per stream

- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits
 - Error: If we have 10 1s then 50% error means 10 +/- 5
Idea: Exponential Windows

- Solution that doesn’t (quite) work:
 - Summarize **exponentially increasing** regions of the stream, looking backward
 - Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last N bits, except we are not sure how many of the last 6 1s are included in the N
Stores only $O(\log^2 N)$ bits

- $O(\log N)$ counts of $\log_2 N$ bits each

Easy update as more bits enter

Error in count no greater than the number of 1s in the “unknown” area
What’s Not So Good?

- As long as the 1s are fairly evenly distributed, the error due to the unknown region is small – no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!
Fixup: DGIM method

- **Idea:** Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block *sizes* (number of 1s) increase exponentially

- When there are few 1s in the window, block sizes stay small, so errors are small
DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...

- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(\log_2 N)$ bits
DGIM: Buckets

- A **bucket** in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [\(O(\log N)\) bits]
 - (B) The number of 1s between its beginning and end [\(O(\log \log N)\) bits]

- **Constraint on buckets:**
 Number of 1s must be a power of 2
 - That explains the \(O(\log \log N)\) in (B) above
Either one or two buckets with the same power-of-2 number of 1s

Buckets do not overlap in timestamps

Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets

Buckets disappear when their end-time is $> N$ time units in the past
Example: Bucketized Stream

Three properties of buckets that are maintained:
- Either **one** or **two** buckets with the same **power-of-2** number of **1s**
- Buckets do not overlap in timestamps
- Buckets are sorted by size
Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time.

- **2 cases:** Current bit is 0 or 1

- **If the current bit is 0:** no other changes are needed
Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on ...
Example: Updating Buckets

Current state of the stream:

```
1001010110001011 0101010101010111 0101010110101000 10110010
```

Bit of value 1 arrives

```
0010101100010111 0101010101010111 0101010110101000 10110010
```

Two orange buckets get merged into a yellow bucket

```
0010101100010111 0101010101010111 0101010110101000 10110010
```

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

```
010110001011 0101010101010111 0101010110101000 10110010 1101
```

Buckets get merged...

```
010110001011 0101010101010111 0101010110101000 10110010 1101
```

State of the buckets after merging

```
010110001011 01010101010101101001 010101110101001101
```

How to Query?

- To estimate the number of 1s in the most recent N bits:
 1. Sum the sizes of all buckets but the last
 (note “size” means the number of 1s in the bucket)
 2. Add half the size of the last bucket

- Remember: We do not know how many 1s of the last bucket are still within the wanted window
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.

Estimate for the number of ones in window of size N is:

\[1 + 1 + 2 + 4 + 4 + 8 + 8 + 16/2 \]
Error Bound: Proof Sketch

- Why is error at most 50%? Let’s prove it!
- Suppose the last bucket has size 2^r
- Worst case overestimate: All the 1s in the bucket are outside of window (except rightmost) - we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r, the true sum is at least $1 + 2 + 4 + \ldots + 2^{r-1} = 2^r - 1$
- Thus, error at most 50%

At least 16 1s
Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either \(r-1 \) or \(r \) buckets (\(r > 2 \))
 - Except for the largest size buckets; we can have any number between 1 and \(r \) of those
- Error is at most \(O(1/r) \)
- By picking \(r \) appropriately, we can tradeoﬀ between number of bits we store and the error
Extensions

- Can we use the same trick to answer queries

 How many 1’s in the last \(k \)? where \(k < N \)?

 A: Find earliest bucket \(B \) that at overlaps with \(k \).

 Number of 1s is the sum of sizes of more recent buckets + ½ size of \(B \)

- Can we handle the case where the stream is not bits, but integers, and we want the sum of the last \(k \) elements?
Extensions

- **Stream of positive integers**
- **We want the sum of the last** \(k\) **elements**
 - **Amazon:** Avg. price of last \(k\) sales
- **Solution:**
 - **(1) If you know all have at most** \(m\) **bits**
 - Treat \(m\) bits of each integer as a separate stream
 - Use DGIM to count 1s in each integer/stream
 - The sum is \(\sum_{i=0}^{m-1} c_i 2^i\)
 - **(2) Use buckets to keep partial sums**
 - Sum of elements in size \(b\) bucket is at most \(2^b\)

\[
\begin{array}{cccccccccccccccc}
2 & 5 & 7 & 1 & 3 & 8 & 4 & 6 & 7 & 9 & 1 & 3 & 7 \\
2 & 5 & 7 & 1 & 3 & 8 & 4 & 6 & 7 & 9 & 1 & 3 & 7 & 6 & 5 \\
2 & 5 & 7 & 1 & 3 & 8 & 4 & 6 & 7 & 9 & 1 & 3 & 7 & 6 & 5 \\
2 & 5 & 7 & 1 & 3 & 8 & 4 & 6 & 7 & 9 & 1 & 3 & 7 & 6 & 5 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
6 & 5 & 3 & 5 & 7 & 1 & 3 & 3 & 1 & 2 & 2 & 3 \\
3 & 5 & 7 & 1 & 3 & 3 & 1 & 2 & 2 & 3 & 3 & 3 \\
3 & 5 & 7 & 1 & 3 & 3 & 1 & 2 & 2 & 3 & 3 & 3 & 2 & 5 \\
1 & 6 & 8 & 4 & 2 & 1 \\
\end{array}
\]

\(c_i\) … estimated count for \(i\)-th bit

Max bucket sum: 25

Idea: Sum in each bucket is at most \(2^b\) (unless bucket has only 1 integer)
Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Counting the number of 1s in the last N elements
 - Exponentially increasing windows
 - Extensions:
 - Number of 1s in any last k (k < N) elements
 - Sums of integers in the last N elements
Counting Itemsets
New Problem: Given a stream, which items appear more than \(s \) times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- 1 = item present; 0 = not present
- Use **DGIM** to estimate counts of 1s for all items

At least 1 of size 16. Partially beyond window.
Extension to Itemsets

- In principle, you could count frequent pairs or even larger sets the same way
 - **One stream per itemset**

- **Drawbacks:**
 - Only approximate
 - **Number of itemsets is way too big**
Exponentially Decaying Windows

- Exponentially decaying windows: A heuristic for selecting likely frequent item(s)ets
 - What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
 - If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:
 $$ \sum_{i=1}^{t} a_i (1 - c)^{t-i} $$
 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
 - When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
Example: Counting Items

- If each a_i is an “item” we can compute the characteristic function of each possible item x as an Exponentially Decaying Window
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$
 - where $\delta_i = 1$ if $a_i = x$, and 0 otherwise
 - Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
 - New item x arrives:
 - Multiply all counts by $(1-c)$
 - Add +1 to count for element x
- Call this sum the “weight” of item x
Important property: Sum over all weights \(\sum_t (1 - c)^t \) is \(1/[1 - (1 - c)] = 1/c \)
Example: Counting Items

- What are “currently” most popular movies?
- Suppose we want to find movies of weight > \(\frac{1}{2} \)
 - Important property: Sum over all weights \(\sum_t (1 - c)^t \) is \(\frac{1}{1 - (1 - c)} = \frac{1}{c} \)
- Thus:
 - There cannot be more than \(\frac{2}{c} \) movies with weight of \(\frac{1}{2} \) or more
- So, \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Extension to Itemsets

- **Count (some) itemsets in an E.D.W.**
 - What are currently “hot” itemsets?
 - **Problem:** Too many itemsets to keep counts of all of them in memory
- **When a basket B comes in:**
 - Multiply all counts by \((1-c)\)
 - For uncounted items in B, create new count
 - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
 - **Drop counts < \(1/2\)**
 - Initiate new counts (next slide)
Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B
 - **Intuitively:** If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”

- **Example:**
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
Counts for single items < \((2/c) \cdot (\text{avg. number of items in a basket})\)

Number of larger itemsets is very large

But we are conservative about starting counts of large sets

- If we counted every set we saw, one basket of 20 items would initiate 1M counts \((2^{20})\)