Large-Scale Machine Learning (2)
Supervised Learning

- Would like to do prediction:
 estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - Real number: Regression
 - Categorical: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.

- Data is labeled:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class: $\{+1, -1\}$, or a real number
Supervised Learning

- **Task:** Given data \((X, Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)
- **Strategy:** Estimate \(y = f(x)\) on \((X, Y)\).
 Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

 - The "hope" is called **generalization**
 - **Overfitting:** If \(f(x)\) predicts well \(Y\) but is unable to predict \(Y'\)
 - **We want to build a model that generalizes well to unseen data**
Formal Setting

1) Training data is drawn independently at random according to unknown probability distribution $P(x, y)$

2) The learning algorithm analyzes the examples and produces a classifier f

- Given new data (x, y) drawn from P, the classifier is given x and predicts $\hat{y} = f(x)$
- The loss $L(\hat{y}, y)$ is then measured

Goal of the learning algorithm:
Find f that minimizes expected loss $E_P[L]$
Formal Setting

Why is it hard?
We estimate f on training data but want the f to work well on unseen future (i.e., test) data.
Minimizing the Loss

- **Goal:** Minimize the expected loss
 \[\min_f \mathbb{E}_P[\mathcal{L}] \]
- But, we don’t have access to \(P \) but only to training sample \(D \):
 \[\min_f \mathbb{E}_D[\mathcal{L}] \]
- So, we minimize the average loss on the training data:
 \[\min_f J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i) \]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
Given:
- A set of \(N \) training examples
 - \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)
- A loss function \(\mathcal{L} \)

Choose the model: \(f_w(x) = w \cdot x + b \)

Find:
- The weight vector \(w \) that minimizes the expected loss on the training data

\[
J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)
\]
Problem: Loss

- **Problem:** Step-wise Constant 0-1-Loss function

Derivative is either 0 or not differentiable
Approximating the Loss

- Approximating the expected loss by a smooth function
 - Replace the original objective function by a surrogate loss function. E.g., hinge loss:

 \[\tilde{f}(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y^{(i)} f(x^{(i)})) \]

 When \(y = 1 \):
Support Vector Machines
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:
- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)})\)
 - \(x_i^{(j)}\) is real valued
 - \(y_i \in \{ -1, +1 \}\)
- Inner product:
 \[w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)} \]

Which is best linear separator (defined by \(w, b\))?
Distance from the separating hyperplane corresponds to the “confidence” of prediction

Example:
- We are more sure about the class of A and B than of C
Maximum Margin

- **Margin γ:** Distance of closest example from the decision line/hyperplane.

The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- **Remember: The Dot product**

\[A \cdot B = \|A\| \cdot \|B\| \cdot \cos \theta \]

\[\|A\| = \sqrt{\sum_{j=1}^{d} (A(j))^2} \]
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = \|A\| \|B\| \cos \theta \]

- What is $w \cdot x_1$, $w \cdot x_2$?

- **So, γ roughly corresponds to the margin**
 - **Bottom line**: Bigger γ, bigger the separation
What is the margin?

Let:
- **Line L**: \(w \cdot x + b = 0 \)
 \[
 w^{(1)}x^{(1)} + w^{(2)}x^{(2)} + b = 0
 \]
- **w** = \((w^{(1)}, w^{(2)})\)
- **Point A** = \((x^{(1)}_A, x^{(2)}_A)\)
- **Point M** on a line = \((x^{(1)}_M, x^{(2)}_M)\)

\[
\text{d}(A, L) = |AH| = |(A-M) \cdot w| = |(x^{(1)}_A - x^{(1)}_M)w^{(1)} + (x^{(2)}_A - x^{(2)}_M)w^{(2)}| = |x^{(1)}_A w^{(1)} + x^{(2)}_A w^{(2)} + b| = |w \cdot A + b|
\]

Note we assume \(||w||_2 = 1 \)

Remember \(x^{(1)}_M w^{(1)} + x^{(2)}_M w^{(2)} = -b \) since M belongs to line L
Largest Margin

- Prediction = \(\text{sign}(w \cdot x + b) \)
- “Confidence” = \((w \cdot x + b) y\)
- For i-th datapoint:
 \(\gamma_i = (w \cdot x_i + b) y_i \)
- Want to solve:
 \[\max_{w,b} \min_i \gamma_i \]
- Can rewrite as
 \[\max_{w,\gamma,b} \gamma \]

\[\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq \gamma \]
Maximize the margin:

- Good according to intuition, theory (c.f. “VC dimension”) and practice

$$\max_{w, \gamma, b} \gamma$$

s.t. $$\forall i, y_i (w \cdot x_i + b) \geq \gamma$$

- $$\gamma$$ is margin ... distance from the separating hyperplane
Support Vector Machines: Deriving the margin
Support Vector Machines

- **Separating hyperplane is defined by the support vectors**
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally, $d+1$ support vectors (for d dim. data)
Problem:
- Let \((w \cdot x + b)y = y\)
 then \((2w \cdot x + 2b)y = 2y\)
- Scaling \(w\) increases margin!

Solution:
- Work with normalized \(w\):
 \[y = \left(\frac{w}{||w||} \cdot x + b \right)y \]
- Let’s also require support vectors \(x_j\)
 to be on the plane defined by:
 \[w \cdot x_j + b = \pm 1 \]
Want to maximize margin!

What is the relation between \(x_1 \) and \(x_2 \)?

\[x_1 = x_2 + 2\gamma \frac{w}{||w||} \]

We also know:

\[w \cdot x_1 + b = +1 \]
\[w \cdot x_2 + b = -1 \]

So:

\[w \cdot x_1 + b = +1 \]
\[w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1 \]
\[w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1 \]

\[\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||} \]

Note:

\[w \cdot w = ||w||^2 \]
Maximizing the Margin

- We started with
 \[
 \max_{w,\gamma} \gamma
 \]
 \[
 \text{s.t. } \forall i, y_i(w \cdot x_i + b) \geq \gamma
 \]
 But \(w\) can be arbitrarily large!

- We normalized and...
 \[
 \arg\max \gamma = \arg\max \frac{1}{\|w\|} = \arg\min \|w\| = \arg\min \frac{1}{2} \|w\|^2
 \]

- Then:
 \[
 \min_w \frac{1}{2} \|w\|^2
 \]
 \[
 \text{s.t. } \forall i, y_i(w \cdot x_i + b) \geq 1
 \]

This is called SVM with “hard” constraints
Non-linearly Separable Data

- If data is **not separable** introduce **penalty**:

 \[
 \min_w \frac{1}{2} \|w\|^2 + C \cdot (\text{# number of mistakes})
 \]

 \[
 \text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq 1
 \]

 - Minimize \(\|w\|^2 \) plus the number of training mistakes
 - Set \(C \) using cross validation

- **How to penalize mistakes?**
 - All mistakes are not equally bad!
Introduce slack variables ξ_i

$$\min_{w,b,\xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

s.t. $\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$

If point x_i is on the wrong side of the margin then get penalty ξ_i

For each data point:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty
Slack Penalty C

$$\min_{w, b, \xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

s.t. $\forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- **What is the role of slack penalty C:**
 - $C=\infty$: Only want to w, b that separate the data
 - $C=0$: Can set ξ_i to anything, then $w=0$ (basically ignores the data)
Support Vector Machines

- **SVM in the “natural” form**

\[
\arg \min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}
\]

Margin

Empirical loss L (how well we fit training data)

Regularization parameter

- **SVM uses “Hinge Loss”:**

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i
\]

\[s.t. \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i\]

Hinge loss: \[\max\{0, 1-z\}\]
How do we obtain the Natural Form?

Previously

$$\min_{w,b} \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i$$

$$s.t. \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i$$

Solve for ξ:

$$\xi_i \geq 1 - y_i \cdot (w \cdot x_i + b)$$
$$\xi_i \geq 0$$

$$\Rightarrow \xi_i \geq \max(0, 1 - y_i \cdot (w \cdot x_i + b))$$

Natural form:

$$\arg\min_{w,b} \ \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i \cdot (w \cdot x_i + b)\}$$
Support Vector Machines: How to estimate the parameters?
SVM: How to estimate w?

$$\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_i$$

$$s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i$$

- **Want to estimate w and b!**
 - **Standard way:** Use a solver!
 - **Solver:** software for finding solutions to “common” optimization problems
 - **Use a quadratic solver:**
 - Minimize quadratic function
 - Subject to linear constraints
 - **Problem:** Solvers are inefficient for big data!
SVM: How to estimate w?

- **Want to minimize** $J(w,b)$:

$$J(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max\left\{0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b\right)\right\}$$

Empirical loss $L(x_i y_i)$

- **Compute the gradient** $\nabla(j)$ w.r.t. $w^{(j)}$

$$\nabla J^{(j)} = \frac{\partial J(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if } y_i (w \cdot x_i + b) \geq 1$$

$$= -y_i x_i^{(j)} \quad \text{else}$$
Gradient descent:

Iterate until convergence:
• For $j = 1 \ldots d$
 • Evaluate: $\nabla J^{(j)} = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$
 • Update: $w'^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}$
• $w \leftarrow w'$

Problem:
- Computing $\nabla J^{(j)}$ takes $O(n)$ time!
 - n ... size of the training dataset

η...learning rate parameter
C...regularization parameter
SVM: How to estimate w?

- **Stochastic Gradient Descent**
 - Instead of evaluating gradient over all examples, evaluate it for each individual training example.

$$\nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

- **Stochastic gradient descent:**

Iterate until convergence:

- For $i = 1 \ldots n$
 - For $j = 1 \ldots d$
 - **Compute:** $\nabla J^{(j)}(x_i)$
 - **Update:** $w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i)$

We just had:

$$\nabla J^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

Notice: no summation over i anymore
Other variations of GD

- **Batch Gradient Descent**
 - Calculates error for each example in the training dataset, but updated model only after all examples have been evaluated (i.e., end of training epoch)
 - **PROS**: fewer updates, more stable error gradient
 - **CONS**: usually requires whole dataset in memory, slower than SGD

- **Mini-Batch Gradient Descent**
 - Like BGD, but using smaller batches of training data. Balance between robustness of SGD, and efficiency of BGD.
Support Vector Machines:
Example
Example: Text categorization

- **Dataset:**
 - **Reuters RCV1** news document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - \(n = 781,000 \) training examples (documents)
 - 23,000 test examples
 - \(d = 50,000 \) features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Example: Text categorization

Questions:

1. Is SGD successful at minimizing $J(w,b)$?
2. How quickly does SGD find the min of $J(w,b)$?
3. What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast Linear SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

(1) SGD-SVM is successful at minimizing the value of $J(w,b)$
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
Optimization “Accuracy”

For optimizing $J(w,b)$ within reasonable quality, SGD-SVM is super fast.
What about multiple classes?

- **Idea 1:**
 One against all
 Learn 3 classifiers
 - $+$ vs. $\{o, -\}$
 - $-$ vs. $\{o, +\}$
 - o vs. $\{+, -\}$
 Obtain:
 $w_+ b_+, w_- b_-, w_o b_o$

- **How to classify?**
- Return class c
 $\arg \max_c w_c x + b_c$
Learn 1 classifier: Multiclass SVM

- **Idea 2: Learn 3 sets of weights simultaneously!**
 - For each class c estimate w_c, b_c
 - Want the correct class y_i to have highest margin:
 $$w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i, \forall i$$
Multiclass SVM

- **Optimization problem:**

 \[
 \min_{w,b} \frac{1}{2} \sum_{c} \|w_{c}\|^2 + C \sum_{i=1}^{n} \xi_{i}
 \]

 \[
 w_{y_i} \cdot x_i + b_{y_i} \geq w_{c} \cdot x_i + b_{c} + 1 - \xi_{i} \quad \forall c \neq y_i, \forall i \]

 \[
 \xi_{i} \geq 0, \forall i
 \]

- To obtain parameters \(w_{c}, b_{c}\) (for each class \(c\))
we can use similar techniques as for 2 class SVM

- SVM is widely perceived a very powerful learning algorithm
ML Parallelization
Why Large-Scale ML?

- The Unreasonable Effectiveness of Data
 - In 2017, Google revisited a 15-year-old experiment on the effect of data and model size in ML, focusing on the latest Deep Learning models in computer vision

- Findings:
 - Performance increases logarithmically based on volume of training data
 - Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains

- Large datasets + large ML models => amazing results!!

Recap

- Last lecture: Decision Trees (and PLANET) as a prime example of **Data Parallelism** in ML

- Today’s lecture: Multiclass SVMs, Neural Networks (especially Deep ones), etc. can leverage both **Data Parallelism and Model Parallelism**
 - State-of-the-art Deep Neural Networks for visual recognition tasks (e.g., ImageNet challenge) can have **more than 100 million parameters!**
Parallelization overview

M2 and M4 must wait for the 1st stage to complete!
Parallelization overview

- Unsupervised or Supervised Objective
- Minibatch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model
Parameter Server

Parameter Server: \(p' = p + \Delta p \Delta p' \)

- **Parameter Server:** Key/Value store
- **Keys** index the model parameters (e.g., weights)
- **Values** are the parameters of the ML model (e.g., a neural network)

Systems challenges:
- High bandwidth
- Synchronization
- Fault tolerance
Parameter Server

Parameter Server \(p' = p + \Delta p \)

Why do parallel updates work?
Async SGD

- **Key idea:** don’t synchronize, just overwrite parameters opportunistically from multiple workers (i.e., servers)
 - Same implementation as SGD, **just without locking**!

- **In theory,** Async SGD converges, but a slower rate than the serial version.
- **In practice,** when gradient updates are sparse (i.e., high dimensional data), **same convergence**!

- Recht et al. “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent”, 2011
HOGWILD!

1 Initialize \(w \) in shared memory // in parallel, do
2 for \(i = \{1, \ldots, p\} \) do
3 while TRUE do
4 if stopping criterion met then
5 break
6 end
7 Sample \(j \) from \(1, \ldots, n \) uniformly at random.
8 Compute \(f_j(w) \) and \(\nabla f_j(w) \) using whatever \(w \) is currently available.
9 Let \(e_j \) denote non-zero indices of \(x_i \)
10 for \(k \in e_j \) do
11 \(w(k) \leftarrow w(k) - \alpha \left[\nabla F_j(w) \right]_k \)
12 end
13 end
14 end

\(\leq P \) is the number of partitions / processors

Component-wise gradient updates (relied on sparsity)
Asynchronous Distributed SGD

- Google, “Large Scale Distributed Deep Networks” [2012]
- All ingredients together:
 - Model and Data parallelism
 - Async SGD
- Dawn of modern Deep Learning

From an engineering standpoint, this is much better than a single model with the same number of total machines:

- Synchronization boundaries involve fewer machines
- Better robustness to individual slow machines
- Makes forward progress even during evictions/restarts