
Announcements:
- Course project –TAs will reach out with feedback (if not already)

- Course grade expectations
- Project Milestone due Thu
- Watch out for homework feedback poll – Please participate J

¡ We often think of networks being organized
into modules, clusters, communities:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

Network Adjacency matrix

Nodes

N
od

es

¡ Find micro-markets by partitioning the
query-to-advertiser graph:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5

advertiser

qu
er
y

[Andersen, Lang: Communities from seed sets, 2006]

¡ Clusters in Movies-to-Actors graph:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

[Andersen, Lang: Communities from seed sets, 2006]

¡ Discovering social circles, circles of trust:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7
[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

¡ Graph is large
§ Assume the graph fits in main memory

§ For example, to work with a 200M node and 2B edge
graph one needs approx. 16GB RAM

§ But the graph is too big for running anything
more than linear time algorithms

¡ We will cover a PageRank based algorithm
for finding dense clusters
§ The runtime of the algorithm will be proportional

to the cluster size (not the graph size!)

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

¡ Discovering clusters based on seed nodes
§ Given: Seed node s
§ Compute (approximate) Personalized PageRank

(PPR) around node s (teleport set={s})
§ Idea is that if s belongs to a nice cluster, the

random walk will get trapped inside the cluster

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9

Seed node

¡ Algorithm outline:
§ Pick a seed node s of interest
§ Run PPR with teleport set = {s}
§ Sort the nodes by the decreasing PPR score
§ Sweep over the nodes and find good clusters

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

Node rank in decreasing PPR score

C
lu

st
er

 “
qu

al
ity

”
(lo

w
er

 is
 b

et
te

r)

Good clusters

Seed node

¡ Undirected graph !(#, %):

¡ Partitioning task:
§ Divide vertices into 2 disjoint groups (,) = +\(

¡ Question:
§ How can we define a “good” cluster in !?

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 11

1

3
2

5

4 6

A B=V\A

1

3

2

5

4 6

¡ What makes a good cluster?
§ Maximize the number of within-cluster

connections
§ Minimize the number of between-cluster

connections

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

1

3

2

5

4 6

A V\A

A

¡ Express cluster quality as a function of the
“edge cut” of the cluster

¡ Cut: Set of edges (edge weights) with only
one node in the cluster:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13

cut(A) = 2
1

3

2

5

4 6

Note: This works for
weighted and unweighted
(set all wij=1) graphs

¡ Partition quality: Cut score
§ Quality of a cluster is the weight of connections

pointing outside the cluster
¡ Degenerate case:

¡ Problem:
§ Only considers external cluster connections
§ Does not consider internal cluster connectivity

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14

“Optimal cut”
Minimum cut

¡ Criterion: Conductance:
Connectivity of the group to the rest of the
network relative to the density of the group

!"#(%): total weight of the edges with at least
one endpoint in %: '() % = ∑,∈%.,
n Vol(A)=2*#edges inside A + #edges pointing out of A

n Why use this criterion?
n Produces more balanced partitions

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 15

[Shi-Malik]

))(2),(min(
|},;),{(|)(

AvolmAvol
AjAiEjiA

-
ÏÎÎ

=f

m… number
of edges of

the graph
di… degree

of node I
E...edge set
of the graph

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

! = #/% = &. (! =)/*# = &. &)(

¡ Algorithm outline:
§ Pick a seed node s of

interest
§ Run PPR w/ teleport={s}
§ Sort the nodes by the

decreasing PPR score
§ Sweep over the nodes

and find good clusters

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 17

Node rank i in decreasing PPR score

C
on

du
ct

an
ce

 !
" # Good clusters

¡ Sweep:
§ Sort nodes in decreasing PPR score $% > $' > ⋯ > $)
§ For each # compute !("# = ,-, … ,#)
§ Local minima of !("#) correspond to good clusters

¡ The whole Sweep
curve can be
computed in linear
time:
§ For loop over the nodes
§ Keep hash-table of

nodes in a set !"
§ To compute # $%&' =)*+(!"&-)/012(!"&-)

§ 012 !"&- = 012 !" + 4"&-
§)*+ !"&- =)*+ !" + 4"&- − 2#(8498: 1; *"&- +1 !")

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

Node rank i in decreasing PPR score

C
on

du
ct

an
ce

 #
$ % Good clusters

¡ How to compute Personalized PageRank (PPR)
without touching the whole graph?
§ Power method won’t work since each single iteration

accesses all nodes of the graph:
!(#$%) = () ⋅ !(+) + % − . /
§ / is a teleport vector: / = 0 …0 % 0 …0 2

§ 3 is the personalized PageRank vector

¡ Approximate PageRank [Andersen, Chung, Lang, ‘07]
§ A fast method for computing approximate

Personalized PageRank (PPR) with teleport set ={s}
§ ApproxPageRank(s, β, ε)

§ s … seed node
§ β … teleportation parameter
§ ε … approximation error parameter

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 19

At index S

¡ Overview of the approximate PPR
§ Lazy random walk, which is a variant of a random walk

that stays put with probability 1/2 at each time step, and
walks to a random neighbor the other half of the time:

!"#$% = 1
2 !"

+ 12*+→"
1
-+
!+ #

§ Keep track of residual PPR score ./ = 0/ − 2/(4)
§ Residual tells us how well PPR score 6" of / is approximated
§ 0/… is the “true” PageRank of node /
§ 2/(4)… is PageRank estimate of node 7 at around 4
If residual ./ of node / is too big ./8/ ≥ : then push the walk
further (distribute some of residual ;" to all 7’s neighbors along
out-coming edges), else don’t touch the node

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

-+… degree of <

¡ A different way to look at PageRank:
[Jeh&Widom. Scaling Personalized Web Search, 2002]

!"($) = ' − " $ + " !"(* ⋅ $)
§ !"($) is the true PageRank vector with teleport

parameter ", and teleport vector $
§ !"(* ⋅ $) is the PageRank vector with teleportation

vector * ⋅ $, and teleportation parameter "
§ where * is the stochastic PageRank transition matrix
§ Notice: * ⋅ $ is one step of a random walk

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 21

¡ Proving: !"($) = ' − " $ + " !"(* ⋅ $)
§ We can break this probability into two cases:

§ Walks of length 0, and
§ Walks of length longer than 0

§ The probability of length 0 walk is ' − ", and the walk
ends where it started, with walker distribution $

§ The probability of walk length >0 is ", and then the walk
starts at distribution $, takes a step, (so it has distribution
*$), then takes the rest of the random walk to with
distribution !"(*$)
§ Note that we used the memoryless nature of the walk: After we

know the location of the second step of the walk has distribution
*$, the rest of the walk can forget where it started and behave as
if it started at *$. This proves the equation.

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

¡ Idea:
§ !… approx. PageRank, "… its residual PageRank
§ Start with trivial approximation: ! = $ and " = %
§ Iteratively push PageRank from " to ! until " is small

¡ Push: 1 step of a lazy random walk from node &:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23

Do 1 step of a walk:
Stay at u with prob. ½
Spread remaining ½
fraction of qu as if a
single step of random
walk were applied to u

Update r

'&()(&, !, "):
!′ = !, "′ = "
!&. = !& + 0 − 2 "&
"&. = 0

32"&
for each 4 such that & → 4:
"4. = "4 + 0

32
"&
7&

return !., ".

residual PPR score "& = 8& − !&

¡ If !" is large, this
means that we have
underestimated the
importance of node "

¡ Then we want to take some
of that residual (!") and give
it away, since we know that we have too much of it

¡ So, we keep #$%!" and then give away the rest to our
neighbors, so that we can get rid of it
§ This correspond to the spreading of #$% !"/'" term

¡ Each node wants to keep giving away this excess
PageRank until all nodes have no or a very small gap in
excess PageRank

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

(")*(", -, !):
-′ = -, !′ = !
-"1 = -" + # − % !"
!"1 = #

$%!"
for each 4 such that" → 4:

!41 = !4 + #
$%

!"
'"

return -1, !1

¡ ApproxPageRank(S, β, ε):
Set ! = 0, $ = [0 . . 0 1 0…0]
While *+,

-∈/
$-
0-
≥ 2:

Choose any vertex - where
34
54
≥ 6

7-89(-, !, $):
!′ = !, $′ = $
!-> = !- + @ − B $-
$-> =

@
CB$-

For each D such that - → D:
$D> = $D +

@
CB$-/0-

! = !>, $ = $>
Return !

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

r … PPR vector
ru …PPR score of u
q …residual PPR vector
qu … residual of node u
du … degree of u

Update r: Move (1 − H)
of the prob. from qu to ru

1 step of a lazy
random walk:
- Stay at qu with prob. ½
- Spread remaining ½ B
fraction of qu as if a
single step of random
walk were applied to u

At index S

¡ Runtime:
§ PageRank-Nibble computes PPR in time O !

" !#$ with
residual error ≤ "
§ Power method would take time &(()* +

"(!#$))
¡ Graph cut approximation guarantee:

§ If there exists a cut of conductance - and volume . then
the method finds a cut of conductance /(- 012.)

§ Details in [Andersen, Chung, Lang. Local graph
partitioning using PageRank vectors, 2007]
http://www.math.ucsd.edu/~fan/wp/localpartfull.pdf

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

¡ The smaller the ε the farther the random
walk will spread!

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

Seed node

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29
[Andersen, Lang: Communities from seed sets, 2006]

Fu
ll P

PR

Ap
pr

ox
im

at
e

PP
R

¡ Algorithm summary:
§ Pick a seed node s of interest
§ Run PPR with teleport set = {s}
§ Sort the nodes by the decreasing PPR score
§ Sweep over the nodes and find good clusters

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

Seed node
Node rank in decreasing PPR score

C
lu

st
er

 “
qu

al
ity

”
(lo

w
er

 is
 b

et
te

r)

Good clusters

¡ Communities: sets of
tightly connected nodes

¡ Define: Modularity !
§ A measure of how well

a network is partitioned
into communities

§ Given a partitioning of the
network into groups " ∈ $:
Q µ ∑sÎ S [(# edges within group s) –

(expected # edges within group s)]

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

Need a null model!

¡ Given real ! on " nodes and # edges,
construct rewired network !’
§ Same degree distribution but

random connections
§ Consider !’ as a multigraph
§ The expected number of edges between nodes
% and & of degrees '% and '& equals to: '% ⋅

'&
)# = '%'&

)#
§ The expected number of edges in (multigraph) G’:

§ = +
)∑%∈.∑&∈.

'%'&
)# = +

) ⋅
+
)#∑%∈.'% ∑&∈.'& =

§ = +
/#)# ⋅)# = #

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 34

j

i

0
1∈2

31 = 25
Note:

¡ Modularity of partitioning S of graph G:
§ Q µ ∑sÎ S [(# edges within group s) –

(expected # edges within group s)]

§ ! ", $ = &
'(∑*∈$ ∑,∈* ∑-∈* .,- −

0,0-
'(

¡ Modularity values take range [−1,1]
§ It is positive if the number of edges within

groups exceeds the expected number
§ Q greater than 0.3-0.7 means significant

community structure
5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

Aij = 1 if i®j,
0 elseNormalizing const.: -1<Q<1

! ", $ = &
'()

*∈$
)
,∈*

)
-∈*

.,- −
0,0-
'(

Equivalently modularity can be written as:

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

is an indicator function

Idea: We can identify communities by
maximizing modularity

¡ Greedy algorithm for community detection
§ !(# log #) run time

¡ Supports weighted graphs
¡ Provides hierarchical partitions

¡ Widely utilized to study large networks because:
§ Fast
§ Rapid convergence properties
§ High modularity output (i.e., “better communities”)

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

[Fast unfolding of communities in large networks, Blondel et al. (2008)]

¡ Louvain algorithm greedily maximizes modularity
¡ Each pass is made of 2 phases:
§ Phase 1: Modularity is optimized by allowing only

local changes of communities
§ Phase 2: The identified communities are aggregated

in order to build a new network of communities
§ Goto Phase 1

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

The passes are repeated
iteratively until no increase of

modularity is possible!

¡ Put each node in a graph into a distinct community
(one node per community)

¡ For each node i, the algorithm performs two
calculations:
§ Compute the modularity gain (∆") when putting node #

from its current community into the community of some
neighbor $ of #

§ Move # to a community that yields the largest modularity
gain ∆"

¡ The loop runs until no movement yields a gain

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40

This first phase stops when a local maximum of the modularity is attained, i.e., when no individual move
can improve the modularity.
One should also note that the output of the algorithm depends on the order in which the nodes are
considered. Research indicates that the ordering of the nodes does not have a significant influence on the
modularity that is obtained.

What is !" if we move node # to community $?

§ where:
§ Σ'(… sum of link weights between nodes in)
§ Σ*+*… sum of all link weights of nodes in)
§ ,','(… sum of link weights between node . and)
§ ,'… sum of all link weights (i.e., degree) of node .

¡ Also need to derive Δ0 1 → . of taking
node . out of community 1.

¡ And then: Δ0 = Δ0 . →) + Δ0 1 → .
5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

Δ0 . →)

Σ'(:

Σ*+*:

¡ The partitions obtained in the first phase are
contracted into super-nodes, and the
weighted network is created as follows
§ Super-nodes are connected if there is at least one

edge between nodes of the corresponding
communities

§ The weight of the edge between the two super-
nodes is the sum of the weights from all edges
between their corresponding partitions

¡ The loop runs until the community
configuration does not change anymore

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

¡ Tuesday
§ Jevin West, UW iSchool
§ Memory in large networks
§ Mining the scientific literature

¡ Thursday
§ Su-In Lee, UW CSE
§ Explainable machine learning
§ Applications in Precision Medicine

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 48

¡ What if we want our clustering based on other
patterns (not edges)?

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Small subgraphs (motifs, graphlets) are building
blocks of networks [Milo et al., ’02]

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51

Network:

Motif:

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

¡ Generalize cuts and volumes to motifs

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52

!"#!$ %&' ()'*+$ %&'

,)-(/) = #(edge end-points in S) ,)-1(/) = #(motif end-points in S)

2 / = #(!"#!$ %&')
,)-(/)

21 / = #(()'*+$ %&')
,)-5(/)

Optimize motif
conductance
[Benson et al., ’16]

¡ Three basic stages:
§ 1) Pre-processing

§ Wij
(M) = # times (i, j) participates in the motif

§ 2) PageRank Nibble
§ Same as before but on weighted W(M)

§ 3) Sweep
§ Same as before

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

3
1

1
1
1 1

1

1 1

1 1

1

1

1
2

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Graph G Weighted graph W(M)

A C

B D

Figure 2: Higher-order organization of the Florida Bay food web. A: Motif conductance for
different motifs on the Florida Bay ecosystem food web (19). A priori it is not clear whether the
network is organized based on a given motif. For example, motifs M5 (green) and M8 (blue)
do not reveal any higher-order organization (motif conductance has high values). However,
the downward spikes of the red curve show that M6 reveals rich higher-order modular struc-
ture (27). The shape of the curve suggests that food webs might be organized based on the
motif M6. Ecologically, motif M6 corresponds to two species mutually feeding on each other
and also preying on a common third species. B: Clustering of the food web based on motif
M6. (For illustration, edges not participating in at least one instance of the motif are omitted.)
The clustering reveals three known aquatic layers: pelagic fishes (yellow), benthic fishes and
crabs (red), and sea-floor macroinvertebrates (blue) as well as a cluster of microfauna and detri-
tus (green). Our framework identifies these modules with higher accuracy (84%) than existing
methods (65–69%) (11). The clustering reveals that the energy flow pattern of motif M6 occurs
frequently within these modules and infrequently across these modules. For example, it is un-
common for two competitors from one aquatic layer to hunt each other and then have common
prey in a different layer. C: A higher-order cluster (yellow nodes in (B)) demonstrates how the
pelagic layer is organized based on the motif M6. The needlefish and other pelagic fishes eat
each other while several other fishes are prey for these two species. D: Organization of micro-
fauna cluster (green nodes in (B)) based on the motif M6. Here, several microfauna decompose
into Particulate Organic Carbon in the water (water POC) but also consume water POC. Free
bacteria serves as an energy source for both the microfauna and water POC.

8

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).

7

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).

7

5/6/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 54

A C

B D

Figure 2: Higher-order organization of the Florida Bay food web. A: Motif conductance for
different motifs on the Florida Bay ecosystem food web (19). A priori it is not clear whether the
network is organized based on a given motif. For example, motifs M5 (green) and M8 (blue)
do not reveal any higher-order organization (motif conductance has high values). However,
the downward spikes of the red curve show that M6 reveals rich higher-order modular struc-
ture (27). The shape of the curve suggests that food webs might be organized based on the
motif M6. Ecologically, motif M6 corresponds to two species mutually feeding on each other
and also preying on a common third species. B: Clustering of the food web based on motif
M6. (For illustration, edges not participating in at least one instance of the motif are omitted.)
The clustering reveals three known aquatic layers: pelagic fishes (yellow), benthic fishes and
crabs (red), and sea-floor macroinvertebrates (blue) as well as a cluster of microfauna and detri-
tus (green). Our framework identifies these modules with higher accuracy (84%) than existing
methods (65–69%) (11). The clustering reveals that the energy flow pattern of motif M6 occurs
frequently within these modules and infrequently across these modules. For example, it is un-
common for two competitors from one aquatic layer to hunt each other and then have common
prey in a different layer. C: A higher-order cluster (yellow nodes in (B)) demonstrates how the
pelagic layer is organized based on the motif M6. The needlefish and other pelagic fishes eat
each other while several other fishes are prey for these two species. D: Organization of micro-
fauna cluster (green nodes in (B)) based on the motif M6. Here, several microfauna decompose
into Particulate Organic Carbon in the water (water POC) but also consume water POC. Free
bacteria serves as an energy source for both the microfauna and water POC.

8

Micro-
nutrient
sourcesBenthic Fishes

Benthic Macroinvertebrates

Pelagic fishes
and benthic prey

Use multiple
eigenvectors or recursive
bi-partitioning to get
multiple clusters

