Announcements:
- Thu May 2 – Homework 2 due and releasing Homework 3
- Thu May 9 – Project Milestone (make sure to have dataset in hand/disk)
- ETL Course Assessment today

Analysis of Large Graphs: Link Analysis, PageRank
New Topic: Graph Data!

<table>
<thead>
<tr>
<th>High dim. data</th>
<th>Graph data</th>
<th>Infinite data</th>
<th>Machine learning</th>
<th>Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality sensitive hashing</td>
<td>PageRank, SimRank</td>
<td>Sampling data streams</td>
<td>SVM</td>
<td>Recommender systems</td>
</tr>
<tr>
<td>Clustering</td>
<td>Community Detection</td>
<td>Filtering data streams</td>
<td>Decision Trees</td>
<td>Association Rules</td>
</tr>
<tr>
<td>Dimensionality reduction</td>
<td>Spam Detection</td>
<td>Queries on streams</td>
<td>Perceptron, kNN</td>
<td>Duplicate document detection</td>
</tr>
</tbody>
</table>
Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Networks

Internet
Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.
Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on data mining.

CS547: Classes are in the SIG building

Computer Science Department at UW

University of Washington
Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on data mining.

CS547: Classes are in the SIG building.

Computer Science Department at UW.

University of Washington.
Web as a Directed Graph
How to organize the Web?

First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information
 Who to “trust”?
 - **Trick:** Trustworthy pages may point to each other!

- (2) What is the “best” answer to query “newspaper”?
 - No single right answer
 - **Trick:** Pages that actually know about newspapers might all be pointing to many newspapers
Ranking Nodes on the Graph

- All web pages are not equally “important”
 - thispersondoesnotexist.com vs. www.uw.edu

- There is a large diversity in the web-graph node connectivity.
 Let’s rank the pages by the link structure!
Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms
PageRank: The “Flow” Formulation
Links as Votes

- **Idea: Links as votes**
 - Page is more important if it has more links
 - In-coming links? Out-going links?
 - **Think of in-links as votes:**
 - www.uw.edu has **millions** in-links
 - thispersondoesnotexist.com has a **few thousands** in-link
 - **Are all in-links equal?**
 - Links from important pages count more
 - Recursive question!
Web pages are important if people visit them a lot.

But we can’t watch everybody using the Web.

A good surrogate for visiting pages is to assume people follow links randomly.

Leads to *random surfer* model:

- Start at a random page and follow random out-links repeatedly, from whatever page you are at.
- $\text{PageRank} = \text{limiting probability of being at a page.}$
Intuition – (2)

- Solve the recursive equation: “importance of a page = its share of the importance of each of its predecessor pages”
 - Equivalent to the random-surfer definition of PageRank

- Technically, *importance* = the principal eigenvector of the transition matrix of the Web
 - A few fix-ups needed
Example: PageRank Scores
Simple Recursive Formulation

- Each link’s vote is proportional to the importance of its source page.
- If page \(j \) with importance \(r_j \) has \(n \) out-links, each link gets \(r_j/n \) votes.
- Page \(j \)'s own importance is the sum of the votes on its in-links.

\[
r_j = \frac{r_i}{3} + \frac{r_k}{4}
\]
PageRank: The “Flow” Model

- A “vote” from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a “rank” r_j for page j

$\begin{align*}
 r_j &= \sum_{i \rightarrow j} \frac{r_i}{d_i} \\

 d_i &\ldots \text{out-degree of node } i
\end{align*}$

"Flow" equations:

$\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 + r_m \\
 r_m &= r_a/2
\end{align*}$
Solving the Flow Equations

- **3 equations, 3 unknowns, no constants**
 - No unique solution
 - All solutions equivalent modulo the scale factor

- **Additional constraint forces uniqueness:**
 - \(r_y + r_a + r_m = 1 \)
 - **Solution:** \(r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \)

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

- **We need a new formulation!**
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** \(M \)
 - Let page \(i \) has \(d_i \) out-links
 - If \(i \rightarrow j \), then \(M_{ji} = \frac{1}{d_i} \) else \(M_{ji} = 0 \)
 - \(M \) is a **column stochastic matrix**
 - Columns sum to 1

- **Rank vector** \(r \): vector with an entry per page
 - \(r_i \) is the importance score of page \(i \)
 - \(\sum_i r_i = 1 \)

- The flow equations can be written
 \[
 r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}
 \]
 \[
 r = M \cdot r
 \]
Example

- Remember the flow equation: \(r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
- Flow equation in the matrix form: \(M \cdot r = r \)
- Suppose page \(i \) links to 3 pages, including \(j \)

\[
M = \begin{pmatrix}
\text{1/3} \\
\vdots \\
\text{1/3}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\text{1/3} \\
\vdots \\
\text{1/3}
\end{pmatrix} \cdot \begin{pmatrix}
r_i \\
r_i \\
r_i
\end{pmatrix} = \begin{pmatrix}
r_j \\
r_j \\
r_j
\end{pmatrix}
\]
Example: Flow Equations & M

\[
\begin{align*}
\text{r}_y &= \frac{\text{r}_y}{2} + \frac{\text{r}_a}{2} \\
\text{r}_a &= \frac{\text{r}_y}{2} + \frac{\text{r}_m}{2} \\
\text{r}_m &= \frac{\text{r}_a}{2}
\end{align*}
\]

\[
r = M \cdot r
\]

\[
\begin{bmatrix}
\text{r}_y \\
\text{r}_a \\
\text{r}_m
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
0 & \frac{1}{2} & 0
\end{bmatrix}
\begin{bmatrix}
\text{r}_y \\
\text{r}_a \\
\text{r}_m
\end{bmatrix}
\]
Eigenvector Formulation

- The flow equations can be written
 \[r = M \cdot r \]
- So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
 - Starting from any vector \(u \), the limit \(M(M(...M(M(u))) \) is the long-term distribution of the surfers.
 - The math: limiting distribution = principal eigenvector of \(M = \text{PageRank} \).
 - Note: If \(r \) satisfies the equation \(r = Mr \), then \(r \) is an eigenvector of \(M \) with eigenvalue 1
- We can now efficiently solve for \(r \)! The method is called Power iteration

\[\text{NOTE: } x \text{ is an eigenvector with the corresponding eigenvalue } \lambda \text{ if: } Ax = \lambda x \]
Power Iteration Method

- Given a web graph with \(n \) nodes, where the nodes are pages and edges are hyperlinks
- **Power iteration:** a simple iterative scheme
 - Suppose there are \(N \) web pages
 - Initialize: \(r^{(0)} = [1/N, \ldots, 1/N]^T \)
 - Iterate: \(r^{(t+1)} = M \cdot r^{(t)} \)
 - Stop when \(|r^{(t+1)} - r^{(t)}|_1 < \varepsilon \)

\[
r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}
\]

- \(d_i \) out-degree of node \(i \)

\[|x|_1 = \sum_{1 \leq i \leq N} |x_i| \] is the \(L_1 \) norm
 - Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - **1:** $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - **2:** $r = r'$
 - Goto 1

- **Example:**

 $$
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} = \begin{pmatrix}
 1/3 \\
 1/3 \\
 1/3
 \end{pmatrix}
 $$

 Iteration 0, 1, 2, …
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

$$
\begin{pmatrix}
r_y \\
r_a \\
r_m
\end{pmatrix} =
\begin{pmatrix}
1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\
1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\
1/3 & 1/6 & 3/12 & 1/6 & \ldots & 3/15
\end{pmatrix}
$$

$\text{Iteration } 0, 1, 2, \ldots$

$$
\begin{array}{ccc}
\text{y} & \text{a} & \text{m} \\
y & 1/2 & 1/2 & 0 \\
a & 1/2 & 0 & 1 \\
m & 0 & 1/2 & 0 \\
\end{array}
$$

$$
\begin{align*}
r_y &= r_y/2 + r_a/2 \\
r_a &= r_y/2 + r_m \\
r_m &= r_a/2
\end{align*}
$$
Why Power Iteration works? (1)

- **Power iteration:**
 A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
 - $r^{(1)} = M \cdot r^{(0)}$
 - $r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$
 - $r^{(3)} = M \cdot r^{(2)} = M(M^2r^{(0)}) = M^3 \cdot r^{(0)}$

- **Claim:**
 Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M
Why Power Iteration works? (2)

- **Claim:** Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ..., $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M

- **Proof:**

 - Assume M has n linearly independent eigenvectors, $x_1, x_2, ..., x_n$ with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$

 - Vectors $x_1, x_2, ..., x_n$ form a basis and thus we can write:

 $$ r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n $$

 - $M r^{(0)} = M(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n)$

 $$ = c_1 (M x_1) + c_2 (M x_2) + \cdots + c_n (M x_n) $$

 $$ = c_1 (\lambda_1 x_1) + c_2 (\lambda_2 x_2) + \cdots + c_n (\lambda_n x_n) $$

 - **Repeated multiplication on both sides produces**

 $$ M^k r^{(0)} = c_1 (\lambda_1^k x_1) + c_2 (\lambda_2^k x_2) + \cdots + c_n (\lambda_n^k x_n) $$
Why Power Iteration works? (3)

- **Claim:** Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

- **Proof (continued):**
 - Repeated multiplication on both sides produces
 \[
 M^k r^{(0)} = c_1 (\lambda_1^k x_1) + c_2 (\lambda_2^k x_2) + \cdots + c_n (\lambda_n^k x_n)
 \]
 - \[
 M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \cdots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right]
 \]
 - Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \ldots < 1$
 and so $\left(\frac{\lambda_i}{\lambda_1} \right)^k = 0$ as $k \to \infty$ (for all $i = 2 \ldots n$).
 - **Thus:** $M^k r^{(0)} \approx c_1 (\lambda_1^k x_1)$
 - Note if $c_1 = 0$ then the method won’t converge
Imagine a random web surfer:
- At any time t, surfer is on some page i
- At time $t + 1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:
- $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- So, $p(t)$ is a probability distribution over pages
The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 \[p(t + 1) = M \cdot p(t) \]

- Suppose the random walk reaches a state
 \[p(t + 1) = M \cdot p(t) = p(t) \]
 then $p(t)$ is **stationary distribution** of a random walk

- Our original rank vector r satisfies
 \[r = M \cdot r \]
 - So, r is a stationary distribution for the random walk
Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what is the initial probability distribution at time $t = 0$.
PageRank: The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \quad \text{or equivalently} \quad r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[
\begin{align*}
 r_a &= \begin{pmatrix} 1 & 0 & 1 & 0 \end{pmatrix} \\
 r_b &= \begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}
\end{align*}
\]

Iteration 0, 1, 2, …

\[
\begin{align*}
 r_j^{(t+1)} &= \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}
\end{align*}
\]
Does it converge to what we want?

- Example:

 \[
 r_a = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0
 \end{bmatrix}
 \]

 \[
 r_b = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0
 \end{bmatrix}
 \]

 \[
 r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}
 \]

- Iteration 0, 1, 2, …
PageRank: Problems

2 problems:

- (1) Dead ends: Some pages have no out-links
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

- (2) Spider traps:
 (all out-links are within the group)
 - Random walk gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 $\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 & 2/6 & 3/12 & 5/24 & 0 \\ 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\ 1/3 & 3/6 & 7/12 & 16/24 & 1 \end{bmatrix}$

 All the PageRank score gets “trapped” in node m.

 $r_y = r_y/2 + r_a/2$
 $r_a = r_y/2$
 $r_m = r_a/2 + r_m$
The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. $1 - \beta$, jump to some random page
- β is typically in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

$$
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
\end{pmatrix}
$$

Here the PageRank score “leaks” out since the matrix is not stochastic.
Solution: Always Teleport!

- **Teleports:** Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

```
<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>⅓</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>⅓</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>⅓</td>
</tr>
</tbody>
</table>
```
Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps** are not a problem, but with traps PageRank scores are **not** what we want
 - **Solution:** Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution:** Make matrix column stochastic by always teleporting when there is nowhere else to go
Solution: Random Teleports

- **Google’s solution that does it all:**
 At each step, random surfer has two options:
 - With probability β, follow a link at random
 - With probability $1-\beta$, jump to some random page

- **PageRank equation** [Brin-Page, 98]

 $$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

 d_i ... out-degree of node i

 This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]
 \[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
 \]

- **The Google Matrix** A:
 \[
 A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
 \]

- We have a recursive problem: $r = A \cdot r$
 And the Power method still works!

- **What is β?**
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

\[
\begin{bmatrix}
1/2 & 1/2 & 0 \\
1/2 & 0 & 0 \\
0 & 1/2 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
13/15 \\
1/15 \\
1/15 \\
\end{bmatrix}
\]
How do we actually compute the PageRank?
Computing PageRank

- **Key step is matrix-vector multiplication**
 - \(r^{\text{new}} = A \cdot r^{\text{old}} \)
- Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)
- Say \(N = 1 \) billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1 - \beta) \left[\frac{1}{N} \right]_{N\times N}
\]

\[
\begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1 \\
\end{bmatrix}
+ \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
\end{bmatrix}
= \begin{bmatrix}
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15 \\
\end{bmatrix}
\]
Rearranging the Equation

- \(\mathbf{r} = \mathbf{A} \cdot \mathbf{r} \), where \(A_{ji} = \beta \, M_{ji} + \frac{1-\beta}{N} \)
- \(r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)
- \(r_j = \sum_{i=1}^{N} \left[\beta \, M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \)
 \[= \sum_{i=1}^{N} \beta \, M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \]
 \[= \sum_{i=1}^{N} \beta \, M_{ji} \cdot r_i + \frac{1-\beta}{N} \]
 \[\text{since } \sum r_i = 1 \]
- So we get: \(\mathbf{r} = \beta \, \mathbf{M} \cdot \mathbf{r} + \left[\frac{1-\beta}{N} \right] \)

Note: Here we assume \(\mathbf{M} \) has no dead-ends

\([x]_N \ldots \text{a vector of length } N \text{ with all entries } x\)
Sparse Matrix Formulation

- We just rearranged the PageRank equation

\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right] \]

- where \([(1-\beta)/N]_N\) is a vector with all \(N\) entries \((1-\beta)/N\)

- \(M\) is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10\(N\) entries
 - So in each iteration, we need to:
 - Compute \(r^{new} = \beta M \cdot r^{old}\)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^{new}\)
 - Note if \(M\) contains dead-ends then \(\sum_j r_j^{new} < 1\) and we also have to renormalize \(r^{new}\) so that it sums to 1
PageRank: The Complete Algorithm

- **Input:** Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- **Output:** PageRank vector r^{new}

 - **Set:** $r_j^{old} = \frac{1}{N}$
 - **repeat until convergence:** $\sum_j |r_j^{new} - r_j^{old}| < \varepsilon$
 - $\forall j$: $r_j^{new} = \sum_{i \rightarrow j} \beta \frac{r_i^{old}}{d_i}$
 - $r_j^{new} = 0$ if in-degree of j is 0
 - **Now re-insert the leaked PageRank:**
 - $\forall j$: $r_j^{new} = r_j^{new} + \frac{1-S}{N}$
 - **where:** $S = \sum_j r_j^{new}$
 - $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
Some Problems with PageRank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (**next**)
- Uses a single measure of importance
 - Other models of importance
 - **Solution:** Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank
Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or $4 \times 10 \times 1 \text{ billion} = 40 \text{GB}$
 - Still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Basic Algorithm: Update Step

- Assume enough RAM to fit r^new into memory
 - Store r^old and matrix M on disk
- **1 step of power-iteration is:**

 Initialize all entries of $r^\text{new} = (1-\beta) / N$

 For each page i (of out-degree d_i):
 - Read into memory: i, d_i, dest_1, ..., dest_{d_i}, $r^\text{old}(i)$
 - For $j = 1...d_i$
 - $r^\text{new}(\text{dest}_j) += \frac{\beta}{d_i} r^\text{old}(i)$

Assuming no dead ends
Analysis

- **Assume enough RAM to fit** r^{new} **into memory**
 - Store r^{old} and matrix M on disk
- **In each iteration, we have to:**
 - Read r^{old} and M
 - Write r^{new} back to disk
- **Cost per iteration of Power method:**
 $= 2|r| + |M|$

- **Question:**
 - What if we could not even fit r^{new} in memory?
Block-based Update Algorithm

- Break r^{new} into k blocks that fit in memory
- Scan M and r^{old} once for each block
Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and r^{old} once for each block
- Total cost:
 - k scans of M and r^{old}
 - Cost per iteration of Power method:
 \[k(|M| + |r|) + |r| = k|M| + (k + 1)|r| \]
- Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration
Block-Stripe Update Algorithm

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of r^{new}.
Block-Stripe Analysis

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method:
 \[|M| (1 + \varepsilon) + (k + 1) |r| \]
Some Problems with PageRank

- **Measures generic popularity of a page**
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (next)

- **Uses a single measure of importance**
 - Other models of importance
 - **Solution:** Hubs-and-Authorities

- **Susceptible to Link spam**
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank