Announcement: Project Proposal **due this Thursday** (no late periods)

Upload homework on time!

Recommender Systems:
Content-based Systems & Collaborative Filtering

CS547 Machine Learning for Big Data
Tim Althoff

PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING
High Dimensional Data

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- Community Detection
- Spam Detection

Infinite data
- Sampling streams
- Filtering data streams
- Queries on streams

Machine learning
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Example: Recommender Systems

- **Customer X**
 - Buys Metallica CD
 - Buys Megadeth CD

- **Customer Y**
 - Does search on Metallica
 - Recommender system suggests Megadeth from data collected about customer X
Recommendations

Examples:

- Amazon.com
- Pandora
- StumbleUpon
- Netflix
- Google News
- Last.fm
- YouTube

Search

Recommendations

Items

Products, web sites, blogs, news items, …
From Scarcity to Abundance

- **Shelf space is a scarce commodity for traditional retailers**
 - Also: TV networks, movie theaters, ...

- **Web enables near-zero-cost dissemination of information about products**
 - From scarcity to abundance

- **More choice necessitates better filters:**
 - Recommendation engines
 - **Association rules:** How *Into Thin Air* made *Touching the Void* a bestseller:
 http://www.wired.com/wired/archive/12.10/tail.html
Sidenote: The Long Tail

Source: Chris Anderson (2004)
Physical vs. Online

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!
Types of Recommendations

- **Editorial and hand curated**
 - List of favorites
 - Lists of “essential” items

- **Simple aggregates**
 - Top 10, Most Popular, Recent Uploads

- **Tailored to individual users**
 - Amazon, Netflix, ...
Formal Model

- $X = \text{set of Customers}$
- $S = \text{set of Items}$

- **Utility function** $u : X \times S \rightarrow R$
 - $R = \text{set of ratings}$
 - R is a totally ordered set
 - e.g., **1-5 stars**, real number in $[0,1]$
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Problems

- **(1) Gathering “known” ratings for matrix**
 - How to collect the data in the utility matrix

- **(2) Extrapolating unknown ratings from the known ones**
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don’t like but what you like

- **(3) Evaluating extrapolation methods**
 - How to measure success/performance of recommendation methods
(1) Gathering Ratings

- **Explicit**
 - Ask people to rate items
 - Doesn’t work well in practice – people don’t like being bothered
 - Crowdsourcing: Pay people to label items

- **Implicit**
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?
(2) Extrapolating Utilities

- **Key problem:** Utility matrix U is sparse
 - Most people have not rated most items
 - **Cold Start Problem:**
 - New items have no ratings
 - New users have no history

- **Three approaches to recommender systems:**
 - 1) Content-based
 - 2) Collaborative
 - 3) Latent factor based
Content-based Recommender Systems
Content-based Recommendations

- **Main idea:** Recommend items to customer x similar to previous items rated highly by x

Example:
- **Movie recommendations**
 - Recommend movies with same actor(s), director, genre, ...
- **Websites, blogs, news**
 - Recommend other sites with “similar” content
Plan of Action

- Item profiles
 - Red Circles
 - Triangles

- User profile

- Recommend

- likes
 - build

- match
Item Profiles

- For each item, create an item profile

- Profile is a set (vector) of features
 - Movies: author, title, actor, director, ...
 - Text: Set of “important” words in document

- How to pick important features?
 - Usual heuristic from text mining is TF-IDF
 (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item
Sidenote: TF-IDF

\[f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j \]

\[TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \]

\[n_i = \text{number of docs that mention term } i \]
\[N = \text{total number of docs} \]

\[IDF_i = \log \frac{N}{n_i} \]

TF-IDF score: \[w_{ij} = TF_{ij} \times IDF_i \]

Doc profile = set of words with highest TF-IDF scores, together with their scores

Note: we normalize TF to discount for “longer” documents
User Profiles and Prediction

- **User profile possibilities:**
 - Weighted average of rated item profiles
 - **Variation:** weight by difference from average rating for item

- **Prediction heuristic: Cosine similarity of user and item profiles)**
 - Given user profile \(x \) and item profile \(i \), estimate
 \[
 u(x, i) = \cos(x, i) = \frac{x \cdot i}{||x|| \cdot ||i||}
 \]

- How do you quickly find items closest to \(x \)?
 - Job for LSH!
Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended
Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user’s content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
Collaborative Filtering

Harnessing quality judgments of other users
Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are “similar” to x’s ratings
- Estimate x’s ratings based on ratings of users in N
Finding “Similar” Users

- Let \(r_x \) be the vector of user \(x \)’s ratings
- **Jaccard similarity metric**
 - **Problem:** Ignores the value of the rating
- **Cosine similarity metric**
 - \(\text{sim}(x, y) = \cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||} \)
 - **Problem:** Treats some missing ratings as “negative”
- **Pearson correlation coefficient**
 - \(S_{xy} = \) items rated by both users \(x \) and \(y \)
 - \[\text{sim}(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \bar{r}_y)^2}} \]
 - \(\bar{r}_x, \bar{r}_y \ldots \) avg. rating of \(x, y \)

\[
\begin{align*}
r_x &= [*, _, _, *, ***] \\
r_y &= [*, _, **, **, _]
\end{align*}
\]
Similarity Metric

- **Intuitively we want:** \(\text{sim}(A, B) > \text{sim}(A, C) \)
- **Jaccard similarity:** \(\frac{1}{5} < \frac{2}{4} \)
- **Cosine similarity:** \(0.380 > 0.322 \)
 - Considers missing ratings as “negative”
 - **Solution:** subtract the (row) mean

<table>
<thead>
<tr>
<th></th>
<th>HP1</th>
<th>HP2</th>
<th>HP3</th>
<th>TW</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{sim } A, B \text{ vs. } A, C: \quad 0.092 > -0.559 \]

Notice cosine sim. is correlation when data is centered at 0.
Rating Predictions

From similarity metric to recommendations:

- Let r_{x} be the vector of user x’s ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

 \[r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi} \]

 Or even better: \[r_{xi} = \frac{\Sigma_{y \in N} s_{xy} \cdot r_{yi}}{\Sigma_{y \in N} s_{xy}} \]

 Shorthand: $s_{xy} = \text{sim}(x, y)$

- Many other tricks possible...
Item-Item Collaborative Filtering

- So far: **User-user collaborative filtering**
- **Another view:** **Item-item**
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

\[
\begin{align*}
 r_{xi} &= \frac{\sum_{j \in N(i; x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i; x)} S_{ij}} \\
 S_{ij} &\quad \text{similarity of items } i \text{ and } j \\
 r_{xj} &\quad \text{rating of user } x \text{ on item } j \\
 N(i; x) &\quad \text{set items which were rated by } x \text{ and similar to } i
\end{align*}
\]
Item-Item CF (|N|=2)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **unknown rating**
- **rating between 1 to 5**
Item-Item CF ($|N|=2$)

<table>
<thead>
<tr>
<th>movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>?</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- estimate rating of movie 1 by user 5
Item-Item CF (|N|=2)

Neighbor selection: Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:
1) Subtract mean rating m_i from each movie i

 $m_1 = (1+3+5+5+4)/5 = 3.6$

 row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows

<table>
<thead>
<tr>
<th>movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>?</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Item-Item CF (|N|=2)

```
Compute similarity weights:
s_{1,3}=0.41, s_{1,6}=0.59
```
Item-Item CF ($|N|=2$)

Predict by taking weighted average:

$$r_{1.5} = \frac{(0.41 \times 2 + 0.59 \times 3)}{(0.41 + 0.59)} = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i; x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$
Define similarity s_{ij} of items i and j

Select k nearest neighbors $N(i; x)$

- Items most similar to i, that were rated by x

Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i; x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i; x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean movie rating
- b_x = rating deviation of user x
 = (avg. rating of user x) $- \mu$
- b_i = rating deviation of movie i
Item-Item vs. User-User

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.9</td>
<td>1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>

- In practice, it has been observed that **item-item** often works better than **user-user**
- **Why?** Items are simpler, users have multiple tastes
Pros/Cons of Collaborative Filtering

+ Works for any kind of item
 - No feature selection needed

- Cold Start:
 - Need enough users in the system to find a match

- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items

- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items

- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model

- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem
Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed
Evaluation

movies

users

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation

The diagram illustrates a test data set for a recommendation system, where the rows represent users and the columns represent movies. The shaded cells indicate movies that the system should predict ratings for, while the non-shaded cells represent known ratings.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This data set is used to evaluate the performance of the recommendation system.
Evaluating Predictions

- **Compare predictions with known ratings**
 - **Root-mean-square error (RMSE)**
 \[
 \sqrt{\frac{1}{N} \sum_{x_i} (r_{xi} - r_{xi}^*)^2}
 \]
 - \(r_{xi}^*\) is the true rating of \(x\) on \(i\)
 - \(N\) is the number of points we are making comparisons on
 - **Precision at top 10 (or k):**
 - % of those in top 10 (or k)
 - **Rank Correlation:**
 - Spearman’s correlation between system’s and user’s complete rankings

- **Another approach: 0/1 model**
 - **Coverage:**
 - Number of items/users for which the system can make predictions
 - **Precision:**
 - Accuracy of predictions
 - **Receiver operating characteristic (ROC):**
 - Tradeoff curve between false positives and false negatives
Problems with Error Metrics

- **Narrow focus on accuracy sometimes misses the point**
 - Prediction Diversity
 - Prediction Context
 - Order of predictions

- **In practice, we care only to predict high ratings:**
 - RMSE might penalize a method that does well for high ratings and badly for others
Expensive step is finding k most similar customers: $O(|X|)$

Too expensive to do at runtime

- Could pre-compute
- Pre-computation takes time $O(k \cdot |X|)$
 - X ... set of customers

We already know how to do this!

- Near-neighbor search in high dimensions (LSH)
- Clustering
- Dimensionality reduction
Tip: Add Data

- Leverage all the data
 - Don’t try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best

- Add more data
 - e.g., add IMDB data on genres

- More data beats better algorithms

 [Link](http://anand.typepad.com/datawocky/2008/03/more-data-usual.html)
On Thursday:
The Netflix prize and the Latent Factor Models
On Thursday: The Netflix Prize

- **Training data**
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005

- **Test data**
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: root mean squared error (RMSE)
 - Netflix Cinematch RMSE: 0.9514

- **Competition**
 - 2700+ teams
 - $1 million prize for 10% improvement on Cinematch
On Thursday: Latent Factor Models

- **Next topic:** Recommendations via Latent Factor models

The bubbles above represent products sized by sales volume. Products close to each other are recommended to each other.
Latent Factor Models (i.e., SVD++)

- Geared towards females: The Princess Diaries
- Serious: Amadeus
- The Color Purple
- Sense and Sensibility
- Ocean's 11
- The Lion King
- Independence Day
- Lethal Weapon
- Braveheart
- Geared towards males: Dumb and Dumber
- Less serious: Gus
- Dave