
Recitation sessions:
¡ Review of proof techniques and probability

§ Location: Tuesday April 9, from 3:30-5:20 pm
in PAA A102

¡ Review of linear algebra
§ Location: Thursday, January 17, from 4:30-5:20 pm in SIG 134

Not yet enrolled? Not yet waitlisted?
¡ Most of you have already received add codes.
¡ We can still add students to the course!
¡ Sign up through the form on course website, and for class

attendance (paper form in class).

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 1

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Network
Analysis

Spam
Detection

Infinite
data

Sampling
data

streams

Filtering
data

streams

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

Given a query image patch, find similar images

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

¡ Collect billions of images
¡ Determine feature vector for each image (4k dim)
¡ Given a query Q, find nearest neighbors FAST

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5

Distance

Image B Feature Vector

Image Q Feature Vector

Similarity (Q,B)

0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 00 0 …

1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 00 1 …

…

…

Q

B

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

Q

Nearest neighbor query
in the embedding space

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7

¡ Many problems can be expressed as
finding “similar” sets:
§ Find near-neighbors in high-dimensional space

¡ Examples:
§ Pages with similar words

§ For duplicate detection, classification by topic
§ Customers who purchased similar products

§ Products with similar customer sets
§ Images with similar features

§ Image completion
§ Recommendations and search

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

¡ Given: High dimensional data points !", !$, …
§ For example: Image is a long vector of pixel colors

¡ And some distance function &(!", !$)
§ which quantifies the “distance” between !" and !$

¡ Goal: Find all pairs of data points (!), !*) that
are within distance threshold & !), !* ≤ ,

¡ Note: Naïve solution would take - .$

where . is the number of data points
¡ MAGIC: This can be done in - . !! How??

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9

¡ LSH is really a family of related techniques
¡ In general, one throws items into buckets using

several different “hash functions”
¡ You examine only those pairs of items that share

a bucket for at least one of these hashings
¡ Upside: Designed correctly, only a small fraction

of pairs are ever examined
¡ Downside: There are false negatives – pairs of

similar items that never even get considered

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

¡ Suppose we need to find near-duplicate
documents among ! = # million documents
§ Naïvely, we would have to compute pairwise

similarities for every pair of docs
§ !(! − #)/(≈ 5*1011 comparisons
§ At 105 secs/day and 106 comparisons/sec,

it would take 5 days
§ For ! = #) million, it takes more than a year…

¡ Similarly, we have a dataset of 10m images,
quickly find the most similar to query image Q

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

1. Shingling: Converts a document into a set
representation (Boolean vector)

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

§ Candidate pairs!

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the docu-
ment

Min
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

Step 1: Shingling:
Convert a document into a set

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the docu-
ment

Step 1: Shingling: Converts a document into a set
¡ A k-shingle (or k-gram) for a document is a

sequence of k tokens that appears in the doc

§ Tokens can be characters, words or something else,

depending on the application

§ Assume tokens = characters for lecture examples

¡ To compress long shingles, we can hash them to

(say) 4 bytes

¡ Represent a document by the set of hash
values of its k-shingles

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles: h(D1) = {1, 5, 7}

¡ k = 8, 9, or 10 is often used in practice

¡ Benefits of shingles:
§ Documents that are intuitively similar will have

many shingles in common
§ Changing a word only affects k-shingles within

distance k-1 from the word

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 17

¡ Document D1 is represented by a set of its k-
shingles C1=S(D1)

¡ A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1ÇC2|/|C1ÈC2|

Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

3 in intersection.
8 in union.
Jaccard similarity

= 3/8

Encode sets using 0/1 (bit, Boolean) vectors
¡ Rows = elements (shingles)
¡ Columns = sets (documents)

§ 1 in row e and column s if and
only if e is a member of s

§ Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

§ Typical matrix is sparse!
¡ Each document is a column:

§ Example: sim(C1 ,C2) = ?
§ Size of intersection = 3; size of union = 6,

Jaccard similarity (not distance) = 3/6
§ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 19

0101

0111

1001

1000

1010
1011

0111
Documents

Sh
in

gl
es

We don’t really construct the
matrix; just imagine it exists

¡ So far:
§ Documents ® Sets of shingles
§ Represent sets as Boolean vectors in a matrix

¡ Next goal: Find similar columns while
computing small signatures
§ Similarity of columns == similarity of signatures

¡ Warnings:
§ Comparing all pairs takes too much time: Job for LSH

§ These methods can produce false negatives, and even false
positives (if the optional check is not made)

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

Step 2: Min-Hashing: Convert large sets to
short signatures, while preserving similarity

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

¡ Key idea: “hash” each column C to a small
signature h(C), such that:
§ sim(C1, C2) is the same as the “similarity” of

signatures h(C1) and h(C2)

¡ Goal: Find a hash function h(·) such that:
§ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Idea: Hash docs into buckets. Expect that
“most” pairs of near duplicate docs hash into
the same bucket!

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

¡ Goal: Find a hash function h(·) such that:
§ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Clearly, the hash function depends on
the similarity metric:
§ Not all similarity metrics have a suitable

hash function

¡ There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23

¡ Permute the rows of the Boolean matrix using
some permutation p
§ Thought experiment – not real

¡ Define minhash function for this permutation p,
hp(C) = the number of the first (in the permuted
order) row in which column C has value 1.
§ Denoted this as: hp (C) = minp p(C)

¡ Apply, to all columns, several randomly chosen
permutations p to create a signature for each
column

¡ Result is a signature matrix: Columns = sets,
Rows = minhash values for each permutation p

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation
(row 1) is the first to map to a 1

h2(3)=1 (permutation 2, column 3)
4th element of the permutation
(row 1) is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation p
hp (C) = minp p(C)

¡ Students sometimes ask whether the minhash

value should be the original number of the

row, or the number in the permuted order (as

we did in our example)

¡ Answer: it doesn’t matter
§ We only need to be consistent, and assure that

two columns get the same value if and only if their

first 1’s in the permuted order are in the same row

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

¡ Choose a random permutation p
¡ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
¡ Why?

§ Let X be a doc (set of shingles), zÎ X is a shingle
§ Then: Pr[p(z) = min(p(X))] = 1/|X|

§ It is equally likely that any zÎ X is mapped to the min element

§ Let y be s.t. p(y) = min(p(C1ÈC2))
§ Then either: p(y) = min(p(C1)) if y Î C1 , or

p(y) = min(p(C2)) if y Î C2

§ So the prob. that both are true is the prob. y Î C1 Ç C2

§ Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2)
4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

01

10

00

11

00

00

One of the two
cols had to have
1 at position y

¡ Given cols C1 and C2, rows are classified as:
C1 C2

A 1 1
B 1 0
C 0 1
D 0 0

§ Define: a = # rows of type A, etc.
¡ Note: sim(C1, C2) = a/(a +b +c)
¡ Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

§ Look down the permuted cols C1 and C2 until we see a 1
§ If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

01

10

00

11

00

00

¡ We know: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
¡ Now generalize to multiple hash functions

¡ The similarity of two signatures is the
fraction of the hash functions in which they
agree

¡ Thus, the expected similarity of two

signatures equals the Jaccard similarity of the

columns or sets that the signatures represent

§ And the longer the signatures, the smaller will be

the expected error

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 29

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 30

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

5

7

6

3

1

2

4

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation p

1212

1412

2121

¡ Permuting rows even once is prohibitive
¡ Row hashing!

§ Pick K = 100 hash functions hi

§ Ordering under hi gives a random permutation p of rows!
¡ One-pass implementation

§ For each column c and hash-func. hi keep a “slot” M(i, c)
for the min-hash value of

§ Initialize all M(i, c) = ¥
§ Scan rows looking for 1s

§ Suppose row j has 1 in column c
§ Then for each hi :

§ If hi(j) < M(i, c), then M(i, c) ¬ hi(j)
4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)

for each row r do begin
for each hash function hi do

compute hi (r);
for each column c

if c has 1 in row r
for each hash function hi do

if hi (r) < M(i, c) then
M(i, c) := hi (r);

end;

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

Important: so you hash r only
once per hash function, not
once per 1 in row r.

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = (2x+1) mod 5

h(1) = 1 1 ∞
g(1) = 3 3 ∞

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

M(i, C1) M(i, C2)

Signature matrix M

permutation
h(x) g(x)
1 3
2 0
3 2
4 4
0 1

Step 3: Locality Sensitive Hashing:
Focus on pairs of signatures likely to be from
similar documents

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

¡ Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

¡ LSH – General idea: Use a hash function that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

¡ For Min-Hash matrices:
§ Hash columns of signature matrix M to many buckets
§ Each pair of documents that hashes into the

same bucket is a candidate pair
4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

1212

1412

2121

¡ Pick a similarity threshold s (0 < s < 1)

¡ Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:
M (i, x) = M (i, y) for at least frac. s values of i
§ We expect documents x and y to have the same

(Jaccard) similarity as their signatures

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

1212

1412

2121

¡ Big idea: Hash columns of
signature matrix M several times

¡ Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

¡ Candidate pairs are those that hash to the
same bucket

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 37

1212

1412

2121

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

¡ Divide matrix M into b bands of r rows

¡ For each band, hash its portion of each
column to a hash table with k buckets
§ Make k as large as possible

¡ Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

¡ Tune b and r to catch most similar pairs,
but few non-similar pairs

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

Matrix M

r rows b bands

Buckets

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40

Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

¡ There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

¡ Hereafter, we assume that “same bucket”
means “identical in that band”

¡ Assumption needed only to simplify analysis,
not for correctness of algorithm

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

Assume the following case:
¡ Suppose 100,000 columns of M (100k docs)

¡ Signatures of 100 integers (rows)

¡ Therefore, signatures take 40MB

¡ Goal: Find pairs of documents that

are at least s = 0.8 similar

¡ Choose b = 20 bands of r = 5 integers/band

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

1212

1412

2121

¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.8

§ Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

¡ Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

¡ Probability C1, C2 are not identical in all of the 20
bands: (1-0.328)20 = 0.00035
§ i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)
§ We would find 99.965% pairs of truly similar documents

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43

1212

1412

2121

¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.3

§ Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

¡ Probability C1, C2 identical in one particular
band: (0.3)5 = 0.00243

¡ Probability C1, C2 identical in at least 1 of 20
bands: 1 - (1 - 0.00243)20 = 0.0474
§ In other words, approximately 4.74% pairs of docs

with similarity 0.3 end up becoming candidate pairs
§ They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 44

1212

1412

2121

¡ Pick:
§ The number of Min-Hashes (rows of M)
§ The number of bands b, and
§ The number of rows r per band

to balance false positives/negatives
§ Note, M=b*r

¡ Example: If we had only 10 bands of 10
rows, the number of false positives would
go down, but the number of false negatives
would go up

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

1212

1412

2121

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 46

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
s

No chance
if t < s

Probability = 1
if t > s

Say “yes” if you
are below the line.

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 48

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

False
positives

False
negatives

s

Say “yes” if you
are below the line.

¡ Say columns C1 and C2 have similarity t
¡ Pick any band (r rows)
§ Prob. that all rows in band equal = tr

§ Prob. that some row in band unequal = 1 - tr

¡ Prob. that no band identical = (1 - tr)b

¡ Prob. that at least 1 band identical =
1 - (1 - tr)b

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

t r

1: All rows
of a band
are equal

1 -

2: Some row
of a band
unequal

()b

3: No bands
identical

1 -

4: At least
one band
identical

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

¡ Similarity threshold s
¡ Prob. that at least 1 band is identical:

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51

s 1-(1-sr)b
0.2 0.006
0.3 0.047
0.4 0.186
0.5 0.470
0.6 0.802
0.7 0.975
0.8 0.9996

¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

¡ Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

¡ Check in main memory that candidate pairs
really do have similar signatures

¡ Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

¡ Shingling: Convert documents to set representation
§ We used hashing to assign each shingle an ID

¡ Min-Hashing: Convert large sets to short signatures,
while preserving similarity
§ We used similarity preserving hashing to generate

signatures with property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
§ We used hashing to get around generating random

permutations
¡ Locality-Sensitive Hashing: Focus on pairs of

signatures likely to be from similar documents
§ We used hashing to find candidate pairs of similarity ³ s

4/8/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 54

