
Recitation sessions:
¡ Review of proof techniques and probability

§ Location: Tuesday April 9, from 3:30-5:20 pm 
in PAA A102

¡ Review of linear algebra
§ Location: Thursday, January 17, from 4:30-5:20 pm in SIG 134

Not yet enrolled? Not yet waitlisted?
¡ Most of you have already received add codes.
¡ We can still add students to the course!
¡ Sign up through the form on course website, and for class 

attendance (paper form in class). 
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CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu
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Given a query image patch, find similar images
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¡ Collect billions of images
¡ Determine feature vector for each image (4k dim)
¡ Given a query Q, find nearest neighbors FAST
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¡ Many problems can be expressed as 
finding “similar” sets:
§ Find near-neighbors in high-dimensional space

¡ Examples:
§ Pages with similar words

§ For duplicate detection, classification by topic
§ Customers who purchased similar products

§ Products with similar customer sets
§ Images with similar features

§ Image completion
§ Recommendations and search
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¡ Given: High dimensional data points !", !$, …
§ For example: Image is a long vector of pixel colors

¡ And some distance function &(!", !$)
§ which quantifies the “distance” between !" and !$

¡ Goal: Find all pairs of data points (!), !*) that 
are within distance threshold & !), !* ≤ ,

¡ Note: Naïve solution would take - .$

where . is the number of data points
¡ MAGIC: This can be done in - . !! How??
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¡ LSH is really a family of related techniques
¡ In general, one throws items into buckets using 

several different “hash functions”
¡ You examine only those pairs of items that share 

a bucket for at least one of these hashings
¡ Upside: Designed correctly, only a small fraction 

of pairs are ever examined
¡ Downside: There are false negatives – pairs of 

similar items that never even get considered
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¡ Suppose we need to find near-duplicate 
documents among ! = # million documents
§ Naïvely, we would have to compute pairwise 

similarities for every pair of docs
§ !(! − #)/( ≈ 5*1011 comparisons
§ At 105 secs/day and 106 comparisons/sec, 

it would take 5 days
§ For ! = #) million, it takes more than a year…

¡ Similarly, we have a dataset of 10m images, 
quickly find the most similar to query image Q
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1. Shingling: Converts a document into a set 
representation (Boolean vector)

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

§ Candidate pairs!
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Step 1: Shingling:
Convert a document into a set
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Step 1: Shingling: Converts a document into a set
¡ A k-shingle (or k-gram) for a document is a 

sequence of k tokens that appears in the doc

§ Tokens can be characters, words or something else, 

depending on the application

§ Assume tokens = characters for lecture examples

¡ To compress long shingles, we can hash them to 

(say) 4 bytes

¡ Represent a document by the set of hash 
values of its k-shingles
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¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles: h(D1) = {1, 5, 7}

¡ k = 8, 9, or 10 is often used in practice

¡ Benefits of shingles:
§ Documents that are intuitively similar will have 

many shingles in common
§ Changing a word only affects k-shingles within 

distance k-1 from the word
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¡ Document D1 is represented by a set of its k-
shingles C1=S(D1)

¡ A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1ÇC2|/|C1ÈC2|

Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|
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= 3/8



Encode sets using 0/1 (bit, Boolean) vectors 
¡ Rows = elements (shingles)
¡ Columns = sets (documents)

§ 1 in row e and column s if and 
only if e is a member of s

§ Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

§ Typical matrix is sparse!
¡ Each document is a column:

§ Example: sim(C1 ,C2) = ?
§ Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6
§ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
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¡ So far:
§ Documents ® Sets of shingles
§ Represent sets as Boolean vectors in a matrix

¡ Next goal: Find similar columns while 
computing small signatures
§ Similarity of columns == similarity of signatures

¡ Warnings:
§ Comparing all pairs takes too much time: Job for LSH

§ These methods can produce false negatives, and even false 
positives (if the optional check is not made)
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Step 2: Min-Hashing: Convert large sets to 
short signatures, while preserving similarity
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¡ Key idea: “hash” each column C to a small 
signature h(C), such that:
§ sim(C1, C2) is the same as the “similarity” of 

signatures h(C1) and h(C2)

¡ Goal: Find a hash function h(·) such that:
§ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Idea: Hash docs into buckets. Expect that 
“most” pairs of near duplicate docs hash into 
the same bucket!
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¡ Goal: Find a hash function h(·) such that:
§ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Clearly, the hash function depends on 
the similarity metric:
§ Not all similarity metrics have a suitable 

hash function

¡ There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing
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¡ Permute the rows of the Boolean matrix using 
some permutation p
§ Thought experiment – not real

¡ Define minhash function for this permutation p, 
hp(C) = the number of the first (in the permuted 
order) row in which column C has value 1. 
§ Denoted this as: hp (C) = minp p(C)

¡ Apply, to all columns, several randomly chosen 
permutations p to create a signature for each 
column

¡ Result is a signature matrix: Columns = sets, 
Rows = minhash values for each permutation p
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¡ Students sometimes ask whether the minhash

value should be the original number of the 

row, or the number in the permuted order (as 

we did in our example)

¡ Answer: it doesn’t matter
§ We only need to be consistent, and assure that 

two columns get the same value if and only if their 

first 1’s in the permuted order are in the same row
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¡ Choose a random permutation p
¡ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 
¡ Why?

§ Let X be a doc (set of shingles), zÎ X is a shingle
§ Then: Pr[p(z) = min(p(X))] = 1/|X|

§ It is equally likely that any zÎ X is mapped to the min element

§ Let y be s.t. p(y) = min(p(C1ÈC2))
§ Then either: p(y) = min(p(C1))  if y Î C1 , or

p(y) = min(p(C2))  if y Î C2

§ So the prob. that both are true is the prob. y Î C1 Ç C2

§ Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2) 
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¡ Given cols C1 and C2, rows are classified as:
C1 C2

A 1 1
B 1 0
C 0 1
D 0 0

§ Define: a = # rows of type A, etc.
¡ Note: sim(C1, C2) = a/(a +b +c)
¡ Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

§ Look down the permuted cols C1 and C2 until we see a 1
§ If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not
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¡ We know: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
¡ Now generalize to multiple hash functions

¡ The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

¡ Thus, the expected similarity of two 

signatures equals the Jaccard similarity of the 

columns or sets that the signatures represent

§ And the longer the signatures, the smaller will be 

the expected error
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¡ Permuting rows even once is prohibitive
¡ Row hashing!

§ Pick K = 100 hash functions hi

§ Ordering under hi gives a random permutation p of rows!
¡ One-pass implementation

§ For each column c and hash-func. hi keep a “slot” M(i, c) 
for the min-hash value of 

§ Initialize all M(i, c) = ¥
§ Scan rows looking for 1s

§ Suppose row j has 1 in column c
§ Then for each hi :

§ If hi(j) < M(i, c), then M(i, c) ¬ hi(j)
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How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)



for each row r do begin
for each hash function hi do

compute hi (r);
for each column c 

if c has 1 in row r
for each hash function hi do

if hi (r) < M(i, c) then
M(i, c) := hi (r);

end;
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Important: so you hash r only
once per hash function, not
once per 1 in row r.
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Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = (2x+1) mod 5

h(1) = 1 1 ∞
g(1) = 3 3 ∞

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

M(i, C1) M(i, C2)

Signature matrix M

permutation
h(x) g(x)
1     3
2     0
3     2
4     4
0     1



Step 3: Locality Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents
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¡ Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

¡ LSH – General idea: Use a hash function that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

¡ For Min-Hash matrices: 
§ Hash columns of signature matrix M to many buckets
§ Each pair of documents that hashes into the 

same bucket is a candidate pair
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¡ Pick a similarity threshold s (0 < s < 1)

¡ Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i
§ We expect documents x and y to have the same 

(Jaccard) similarity as their signatures
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¡ Big idea: Hash columns of 
signature matrix M several times

¡ Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

¡ Candidate pairs are those that hash to the 
same bucket
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¡ Divide matrix M into b bands of r rows

¡ For each band, hash its portion of each 
column to a hash table with k buckets
§ Make k as large as possible

¡ Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

¡ Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets
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Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
surely different.



¡ There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

¡ Hereafter, we assume that “same bucket” 
means “identical in that band”

¡ Assumption needed only to simplify analysis, 
not for correctness of algorithm
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Assume the following case:
¡ Suppose 100,000 columns of M (100k docs)

¡ Signatures of 100 integers (rows)

¡ Therefore, signatures take 40MB

¡ Goal: Find pairs of documents that 

are at least s = 0.8 similar

¡ Choose b = 20 bands of r = 5 integers/band
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¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.8

§ Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate 
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

¡ Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

¡ Probability C1, C2 are not identical in all of the 20 
bands: (1-0.328)20 = 0.00035 
§ i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)
§ We would find 99.965% pairs of truly similar documents
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¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.3

§ Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

¡ Probability C1, C2 identical in one particular 
band: (0.3)5 = 0.00243

¡ Probability C1, C2 identical in at least 1 of 20 
bands: 1 - (1 - 0.00243)20 = 0.0474
§ In other words, approximately 4.74% pairs of docs 

with similarity 0.3 end up becoming candidate pairs
§ They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s
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¡ Pick:
§ The number of Min-Hashes (rows of M) 
§ The number of bands b, and 
§ The number of rows r per band

to balance false positives/negatives
§ Note, M=b*r

¡ Example: If we had only 10 bands of 10 
rows, the number of false positives would 
go down, but the number of false negatives 
would go up
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Remember:
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¡ Say columns C1 and C2 have similarity t
¡ Pick any band (r rows)
§ Prob. that all rows in band equal = tr

§ Prob. that some row in band unequal = 1 - tr

¡ Prob. that no band identical  = (1 - tr)b

¡ Prob. that at least 1 band identical =                  
1 - (1 - tr)b
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¡ Similarity threshold s
¡ Prob. that at least 1 band is identical:
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s 1-(1-sr)b
0.2 0.006
0.3 0.047
0.4 0.186
0.5 0.470
0.6 0.802
0.7 0.975
0.8 0.9996



¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)
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¡ Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

¡ Check in main memory that candidate pairs
really do have similar signatures

¡ Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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¡ Shingling: Convert documents to set representation
§ We used hashing to assign each shingle an ID

¡ Min-Hashing: Convert large sets to short signatures, 
while preserving similarity
§ We used similarity preserving hashing to generate 

signatures with property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
§ We used hashing to get around generating random 

permutations
¡ Locality-Sensitive Hashing: Focus on pairs of 

signatures likely to be from similar documents
§ We used hashing to find candidate pairs of similarity ³ s
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