2 Announcements

We will be releasing HW1 today

- It is due in 2 weeks (4/18 at 23:59pm)
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Recitation sessions:

Spark Tutorial and Clinic: Today 2:30-4:20pm in GWN 201 (Gowen Hall)

Frequent Itemset Mining & Association Rules

CS547 Machine Learning for Big Data Tim Althoff PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Association Rule Discovery

Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items

A classic rule:

- If someone buys diaper and milk, then he/she is likely to buy beer
- Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

A large set of items

 e.g., things sold in a supermarket

A large set of baskets

- Each basket is a small subset of items
 - e.g., the things one customer buys on one day

Discover association rules:

Input:

Basket	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

People who bought {x,y,z} tend to buy {v,w}

Example application: Amazon

More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among "items", not "baskets"
- Items and baskets are abstract:
 - For example:
 - Items/baskets can be products/shopping basket
 - Items/baskets can be words/documents
 - Items/baskets can be basepairs/genes
 - Items/baskets can be drugs/patients

Applications – (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items:
 - Apocryphal story of "diapers and beer" discovery
 - Used to position potato chips between diapers and beer to enhance sales of potato chips

Amazon's 'people who bought X also bought Y'

Applications – (2)

- Baskets = sentences; Items = documents in which those sentences appear
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be "in" baskets

Baskets = patients; Items = drugs & side-effects

- Has been used to detect combinations of drugs that result in particular side-effects
- But requires extension: Absence of an item needs to be observed as well as presence

Outline

First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

Example: Frequent Itemsets

Items = {milk, coke, pepsi, beer, juice}
 <u>Support threshold</u> = 3 baskets

Define: Association Rules

Define: Association Rules:

If-then rules about the contents of baskets

- $\{i_1, i_2, \dots, i_k\} \rightarrow j$ means: "if a basket contains all of i_1, \dots, i_k then it is *likely* to contain j''
- In practice there are many rules, want to find significant/interesting ones!
- <u>Confidence</u> of association rule is the probability of j given $I = \{i_1, ..., i_k\}$

$$\operatorname{conf}(I \to j) = \frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}$$

Interesting Association Rules

Not all high-confidence rules are interesting

- The rule X → milk may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- Interest of an association rule $I \rightarrow j$: abs. difference between its confidence and the fraction of baskets that contain j

$$Interest(I \rightarrow j) = |conf(I \rightarrow j) - Pr[j]|$$

 Interesting rules are those with high positive or negative interest values (usually above 0.5)

Example: Confidence and Interest

- $B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$ $B_3 = \{m, b\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$
- Association rule: {m, b} → c
 - Support = 2
 - Confidence = 2/4 = 0.5
 - Interest = |0.5 5/8| = 1/8
 - Item c appears in 5/8 of the baskets
 - The rule is not very interesting!

Association Rule Mining

Problem: Find all association rules with support $\geq s$ and confidence $\geq c$

 Note: Support of an association rule is the support of the set of items in the rule (left and right side)

Hard part: Finding the frequent itemsets!

If {i₁, i₂,..., i_k} → j has high support and confidence, then both {i₁, i₂,..., i_k} and {i₁, i₂,..., i_k, j} will be "frequent"

$$\operatorname{conf}(I \to j) = \frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}$$

Mining Association Rules

Step 1: Find all frequent itemsets I

(we will explain this next)

- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Variant 1: Single pass to compute the rule confidence
 - confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)
 - Variant 2:
 - Observation: If A,B,C→D is below confidence, so is A,B→C,D
 - Can generate "bigger" rules from smaller ones!

Output the rules above the confidence threshold

Example

- $B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$ $B_3 = \{m, c, b, n\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$
- Support threshold s = 3, confidence c = 0.75
- Step 1) Find frequent itemsets:
 - {b,m} {b,c} {c,m} {c,j} {m,c,b}
- Step 2) Generate rules:

b
$$\rightarrow$$
m: *c*=4/6 **b** \rightarrow **c**: *c*=5/6

• $\mathbf{m} \rightarrow \mathbf{b}: c = 4/5$

b,c
$$\rightarrow$$
 m: $c=3/5$
b,m \rightarrow c: $c=3/4$
b \rightarrow c,m: $c=3/6$

Compacting the Output

- To reduce the number of rules, we can post-process them and only output:
 - Maximal frequent itemsets:

No immediate superset is frequent

Gives more pruning

or

Closed itemsets:

No immediate superset has the same support (> 0)

 Stores not only frequent information, but exact supports/counts

Example: Maximal/Closed

Step 2: Finding Frequent Itemsets

Itemsets: Computation Model

Back to finding frequent itemsets

- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to enumerate them.

Items are positive integers, and boundaries between baskets are -1.

Computation Model

- The true cost of mining diskresident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes
 - all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Items are positive integers, and boundaries between baskets are -1.

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\{i_1, i_2\}$
 - Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of *n* items, generate its *n(n-1)/2* pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: 10⁵(10⁵-1)/2 ≈ 5*10⁹
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory is needed

Counting Pairs in Memory

Goal: Count the number of occurrences of each pair of items (i,j):

Approach 1: Count all pairs using a matrix

- Approach 2: Keep a table of triples [*i*, *j*, *c*] = "the count of the pair of items {*i*, *j*} is *c*."
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Comparing the 2 Approaches

Comparing the two approaches

Approach 1: Triangular Matrix

- n = total number items
- Count pair of items {*i*, *j*} only if *i*<*j*
- Keep pair counts in lexicographic order:
 {1,2}, {1,3},..., {1,n}, {2,3}, {2,4},...,{2,n}, {3,4},...

- Total number of pairs n(n-1)/2; total bytes= O(n²)
- Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
- Approach 2 beats Approach 1 if less than 1/3 of possible pairs actually occur

Comparing the two approaches

Approach 1: Triangular Matrix

n = total number items

CO.

Apr

(but

- Problem is if we have too
 Pa many items so the pairs do not fit into memory.
 - Can we do better?

Approach 2 beats Approach 1 if less than 1/3 of possible pairs actually occur

[)]/2 + (j - i)

)(*n*²)

bir

A-Priori Algorithm

- Monotonicity of "Frequent"
- Notion of Candidate Pairs
- Extension to Larger Itemsets

A-Priori Algorithm – (1)

- A two-pass approach called *A-Priori* limits the need for main memory
- Key idea: monotonicity
 - If a set of items *I* appears at least *s* times, so does every subset *J* of *I*

Contrapositive for pairs:

If item *i* does not appear in *s* baskets, then no pair including *i* can appear in *s* baskets

So, how does A-Priori find freq. pairs?

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the # of occurrences of each individual item
 - Requires only memory proportional to #items
- Items that appear $\geq s$ times are the <u>frequent items</u>
- Pass 2: Read baskets again and keep track of the count of <u>only</u> those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)

Main-Memory: Picture of A-Priori

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.

Detail for A-Priori

- You can use the triangular matrix method with *n* = number of frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - C_k = candidate k-tuples = those that might be frequent sets (support > s) based on information from the pass for k-1
 - L_k = the set of truly frequent k-tuples

Example

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1 . But that one can be more careful with candidate generation. For example, in C_3 we know {b,m,j} cannot be frequent since {m,j} is not frequent

Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C₁
- Prune non-frequent. We get: L₁ = { b, c, j, m }
- Generate C₂ = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
- Count the support of itemsets in C₂
- Prune non-frequent. L₂ = { {b,m} {b,c} {c,m} {c,j} }
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- Prune non-frequent. L₃ = { {b,c,m} }

**

A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate *k*-tuple
- For typical market-basket data and reasonable support (e.g., 1%), k = 2 requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct → PreservedGoods
- Lower the support s as itemset gets bigger

PCY (Park-Chen-Yu) Algorithm

- Improvement to A-Priori
- Exploits Empty Memory on First Pass
- Frequent Buckets

PCY (Park-Chen-Yu) Algorithm

Observation:

In pass 1 of A-Priori, most memory is idle

- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
 Note: Bucket≠Basket
 - Keep a count for each bucket into which pairs of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!

PCY Algorithm – First Pass

F	OR	(eac	ch basket) :	
		FOR	(each item in the basket) :	
			add 1 to item's count;	
New in PCY	ſ	FOR	(each pair of items) : hash the pair to a bucket;	
	4		hash the pair to a bucket;	
	L		add 1 to the count for that 1	bucket;

Few things to note:

- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least *s* (support) times

Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent ⁽³⁾
 - So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent ⁽²⁾
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)

Pass 2: Only count pairs that hash to frequent buckets

PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not
- 4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory
- Also, decide which items are frequent and list them for the second pass

PCY Algorithm – Pass 2

- Count all pairs *{i, j}* that meet the conditions for being a **candidate pair**:
 - 1. Both *i* and *j* are frequent items
 - The pair *{i, j}* hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)
- Both conditions are necessary for the pair to have a chance of being frequent

Main-Memory: Picture of PCY

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

More Extensions to A-Priori

- The MMDS book covers several other extensions beyond the PCY idea: "Multistage" and "Multihash"
- For reading on your own, Sect. 6.4 of MMDS
- Recommended video (starting about 10:10): <u>https://www.youtube.com/watch?v=AGAkNiQnbjY</u>

Frequent Itemsets in < 2 Passes

- Simple Algorithm
- Savasere-Omiecinski- Navathe (SON) Algorithm
- Toivonen's Algorithm

Frequent Itemsets in < 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
 - Random sampling
 - Do not sneer; "random sample" is often a cure for the problem of having too large a dataset.
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen

Random Sampling (1)

- Take a random sample of the market baskets
- Run a-priori or one of its improvements in main memory
 - So we don't pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size

Example: if your sample is 1/100 of the baskets, use s/100 as your support threshold instead of s.

Random Sampling (2)

- To avoid false positives: Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass
- But you don't catch sets frequent in the whole but not in the sample
 - Smaller threshold, e.g., s/125, helps catch more truly frequent itemsets
 - But requires more space

SON Algorithm – (1)

- SON Algorithm: Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - Note: we are not sampling, but processing the entire file in memory-sized chunks
- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.

SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- Key "monotonicity" idea: An itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset

Toivonen's Algorithm: Intro

Pass 1:

- Start with a random sample, but lower the threshold slightly for the sample:
 - Example: if the sample is 1% of the baskets, use s/125 as the support threshold rather than s/100
- Find frequent itemsets in the sample
- Add to the itemsets that are frequent in the sample the negative border of these itemsets:
 - Negative border: An itemset is in the negative border if it is not frequent in the sample, but *all* its immediate subsets are
 - Immediate subset = "delete exactly one element"

Example: Negative Border

{*A*,*B*,*C*,*D*} is in the negative border if and only if:

- 1. It is not frequent in the sample, but
- 2. All of {*A*,*B*,*C*}, {*B*,*C*,*D*}, {*A*,*C*,*D*}, and {*A*,*B*,*D*} are.

Toivonen's Algorithm

Pass 1:

- Start with the random sample, but lower the threshold slightly for the subset
- Add to the itemsets that are frequent in the sample the negative border of these itemsets
- Pass 2:
 - Count all candidate frequent itemsets from the first pass, and also count sets in their negative border
- Key: If no itemset from the negative border turns out to be frequent, then we found *all* the frequent itemsets.
 - What if we find that something in the negative border is frequent?
 - We must start over again with another sample!
 - Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in mainmemory.

If Something in the Negative Border Is Frequent . . .

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547