
We will be releasing HW1 today
¡ It is due in 2 weeks (4/18 at 23:59pm)
¡ The homework is long
§ Requires proving theorems as well as coding

¡ Please start early

Recitation sessions:
¡ Spark Tutorial and Clinic:

Today 2:30-4:20pm in GWN 201 (Gowen Hall)
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CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu



Supermarket shelf management –
Market-basket model:

¡ Goal: Identify items that are bought together by 
sufficiently many customers

¡ Approach: Process the sales data collected with 
barcode scanners to find dependencies among 
items

¡ A classic rule:
§ If someone buys diaper and milk, then he/she is 

likely to buy beer
§ Don’t be surprised if you find six-packs next to diapers!
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¡ A large set of items
§ e.g., things sold in a 

supermarket
¡ A large set of baskets
§ Each basket is a 

small subset of items
§ e.g., the things one 

customer buys on one day
¡ Discover association rules:

People who bought {x,y,z} tend to buy {v,w}
§ Example application: Amazon
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Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Basket Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input:

Output:



¡ A general many-to-many mapping 
(association) between two kinds of things
§ But we ask about connections among “items”, 

not “baskets”

¡ Items and baskets are abstract:
§ For example:

§ Items/baskets can be products/shopping basket

§ Items/baskets can be words/documents

§ Items/baskets can be basepairs/genes

§ Items/baskets can be drugs/patients
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¡ Items = products; Baskets = sets of products 

someone bought in one trip to the store

¡ Real market baskets: Chain stores keep TBs of 

data about what customers buy together

§ Tells how typical customers navigate stores, lets 

them position tempting items:

§ Apocryphal story of “diapers and beer” discovery

§ Used to position potato chips between diapers and beer to 

enhance sales of potato chips

¡ Amazon’s ‘people who bought X also bought Y’
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¡ Baskets = sentences; Items = documents in 
which those sentences appear
§ Items that appear together too often could 

represent plagiarism
§ Notice items do not have to be “in” baskets

¡ Baskets = patients; Items = drugs & side-effects
§ Has been used to detect combinations 

of drugs that result in particular side-effects
§ But requires extension: Absence of an item 

needs to be observed as well as presence
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First: Define
Frequent itemsets
Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
A-Priori algorithm
PCY algorithm
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¡ Simplest question: Find sets of items that 
appear together “frequently” in baskets

¡ Support for itemset I: Number of baskets 
containing all items in I
§ (Often expressed as a fraction 

of the total number of baskets)

¡ Given a support threshold s, 
then sets of items that appear 
in at least s baskets are called 
frequent itemsets
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 
{Beer, Bread} = 2



¡ Items = {milk, coke, pepsi, beer, juice}
¡ Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

¡ Frequent itemsets: {m}, {c}, {b}, {j},
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, {b,c} , {c,j}.{m,b}



¡ Define: Association Rules:
If-then rules about the contents of baskets

¡ {i1, i2,…,ik} → j means: “if a basket contains 
all of i1,…,ik then it is likely to contain j”

¡ In practice there are many rules, want to find 
significant/interesting ones!

¡ Confidence of association rule is the 
probability of j given I = {i1,…,ik}
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¡ Not all high-confidence rules are interesting
§ The rule X → milk may have high confidence for 

many itemsets X, because milk is just purchased very 
often (independent of X) and the confidence will be 
high

¡ Interest of an association rule I → j: 
abs. difference between its confidence and 
the fraction of baskets that contain j

§ Interesting rules are those with high positive or 
negative interest values (usually above 0.5)
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B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¡ Association rule: {m, b} →c
§ Support = 2
§ Confidence = 2/4 = 0.5
§ Interest = |0.5 – 5/8| = 1/8

§ Item c appears in 5/8 of the baskets
§ The rule is not very interesting!
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¡ Problem: Find all association rules with 
support ≥s and confidence ≥c
§ Note: Support of an association rule is the support 

of the set of items in the rule (left and right side)
¡ Hard part: Finding the frequent itemsets!
§ If {i1, i2,…, ik} → j has high support and 

confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”
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¡ Step 1: Find all frequent itemsets I
§ (we will explain this next)

¡ Step 2: Rule generation
§ For every subset A of I,  generate a rule A → I \ A

§ Since I is frequent, A is also frequent
§ Variant 1: Single pass to compute the rule confidence

§ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)
§ Variant 2:

§ Observation: If A,B,C→D is below confidence, so is A,B→C,D
§ Can generate “bigger” rules from smaller ones! 

§ Output the rules above the confidence threshold
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B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, c, b, n} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¡ Support threshold s = 3, confidence c = 0.75
¡ Step 1) Find frequent itemsets:
§ {b,m}  {b,c}  {c,m}  {c,j}  {m,c,b}

¡ Step 2) Generate rules:
§ b→m: c=4/6      b→c: c=5/6        b,c→m: c=3/5
§ m→b: c=4/5 …                   b,m→c: c=3/4

b→c,m: c=3/6
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¡ To reduce the number of rules, we can 
post-process them and only output:
§ Maximal frequent itemsets: 

No immediate superset is frequent
§ Gives more pruning

or
§ Closed itemsets:

No immediate superset has the same support (> 0)
§ Stores not only frequent information, but exact 

supports/counts
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Support Maximal(s=3) Closed
A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes
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Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same support.

Its only super-
set, ABC, has
smaller support.





¡ Back to finding frequent itemsets
¡ Typically, data is kept in flat files 

rather than in a database system:
§ Stored on disk
§ Stored basket-by-basket
§ Baskets are small but we have 

many baskets and many items
§ Expand baskets into pairs, triples, etc. 

as you read baskets
§ Use k nested loops to generate all 

sets of size k
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Items are positive integers, 
and boundaries between 

baskets are –1.Note: We want to find frequent itemsets. To find them, we have to 
count them. To count them, we have to enumerate them.



¡ The true cost of mining disk-
resident data is usually the number 
of disk I/Os

¡ In practice, association-rule 
algorithms read the data in passes
– all baskets read in turn

¡ We measure the cost by the 
number of passes an algorithm 
makes over the data
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¡ For many frequent-itemset algorithms, 
main-memory is the critical resource
§ As we read baskets, we need to count 

something, e.g., occurrences of pairs of items
§ The number of different things we can count 

is limited by main memory
§ Swapping counts in/out is a disaster
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¡ The hardest problem often turns out to be 
finding the frequent pairs of items {i1, i2}
§ Why? Freq. pairs are common, freq. triples are rare

§ Why? Probability of being frequent drops exponentially 
with size; number of sets grows more slowly with size

¡ Let’s first concentrate on pairs, then extend to 
larger sets

¡ The approach:
§ We always need to generate all the itemsets

§ But we would only like to count (keep track) of those 
itemsets that in the end turn out to be frequent
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¡ Naïve approach to finding frequent pairs
¡ Read file once, counting in main memory 

the occurrences of each pair:
§ From each basket of n items, generate its 
n(n-1)/2 pairs by two nested loops

¡ Fails if (#items)2 exceeds main memory
§ Remember: #items can be 

100K (Wal-Mart) or 10B (Web pages)
§ Suppose 105 items, counts are 4-byte integers
§ Number of pairs of items: 105(105-1)/2 » 5*109

§ Therefore, 2*1010 (20 gigabytes) of memory is needed
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Goal: Count the number of occurrences of 
each pair of items (i,j):

¡ Approach 1: Count all pairs using a matrix

¡ Approach 2: Keep a table of triples [i, j, c] = 
“the count of the pair of items {i, j} is c.”
§ If integers and item ids are 4 bytes, we need 

approximately 12 bytes for pairs with count > 0
§ Plus some additional overhead for the hashtable
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Triangular Matrix Triples

12 per
occurring pair

Item i

Ite
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¡ Approach 1: Triangular Matrix
§ n = total number items
§ Count pair of items {i, j} only if i<j
§ Keep pair counts in lexicographic order:

§ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
§ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
§ Total number of pairs n(n –1)/2; total bytes= O(n2)
§ Triangular Matrix requires 4 bytes per pair

¡ Approach 2 uses 12 bytes per occurring pair 
(but only for pairs with count > 0)

¡ Approach 2 beats Approach 1 if less than 1/3 of 
possible pairs actually occur

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

Item i

Ite
m

 j



¡ Approach 1: Triangular Matrix
§ n = total number items
§ Count pair of items {i, j} only if i<j
§ Keep pair counts in lexicographic order:

§ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
§ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
§ Total number of pairs n(n –1)/2; total bytes= O(n2)
§ Triangular Matrix requires 4 bytes per pair

¡ Approach 2 uses 12 bytes per occurring pair 
(but only for pairs with count > 0)

¡ Approach 2 beats Approach 1 if less than 1/3 of 
possible pairs actually occur
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Problem is if we have too 
many items so the pairs 
do not fit into memory.

Can we do better?



• Monotonicity of “Frequent”
• Notion of Candidate Pairs
• Extension to Larger Itemsets



¡ A two-pass approach called 
A-Priori limits the need for 
main memory

¡ Key idea: monotonicity
§ If a set of items I appears at 

least s times, so does every subset J of I
¡ Contrapositive for pairs:

If item i does not appear in s baskets, then no 
pair including i can appear in s baskets

¡ So, how does A-Priori find freq. pairs?
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¡ Pass 1: Read baskets and count in main memory 
the # of occurrences of each individual item

§ Requires only memory proportional to #items

¡ Items that appear ≥ " times are the frequent items

¡ Pass 2: Read baskets again and keep track of the 
count of only those pairs where both elements 
are frequent (from Pass 1)
§ Requires memory proportional to square of frequent

items only (for counts)
§ Plus a list of the frequent items (so you know what must 

be counted)
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Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.



¡ You can use the 
triangular matrix 
method with n = number 
of frequent items
§ May save space compared 

with storing triples
¡ Trick: re-number 

frequent items 1,2,… 
and keep a table relating 
new numbers to original 
item numbers
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¡ For each k, we construct two sets of
k-tuples (sets of size k):

§ Ck = candidate k-tuples = those that might be 

frequent sets (support > s) based on information 

from the pass for k–1
§ Lk = the set of truly frequent k-tuples
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¡ Hypothetical steps of the A-Priori algorithm
§ C1 = { {b} {c} {j} {m} {n} {p} }
§ Count the support of itemsets in C1

§ Prune non-frequent. We get: L1 = { b, c, j, m }
§ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
§ Count the support of itemsets in C2

§ Prune non-frequent. L2 = { {b,m} {b,c}  {c,m}  {c,j} }
§ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
§ Count the support of itemsets in C3

§ Prune non-frequent. L3 = { {b,c,m} }
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** Note here we generate new candidates by 
generating Ck from Lk-1 and L1.
But that one can be more careful with candidate 
generation. For example, in C3 we know {b,m,j} 
cannot be frequent since {m,j} is not frequent

**



¡ One pass for each k (itemset size)
¡ Needs room in main memory to count 

each candidate k–tuple
¡ For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most memory

¡ Many possible extensions:
§ Association rules with intervals: 

§ For example: Men over 65 have 2 cars
§ Association rules when items are in a taxonomy

§ Bread, Butter → FruitJam
§ BakedGoods, MilkProduct → PreservedGoods

§ Lower the support s as itemset gets bigger
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• Improvement to A-Priori
• Exploits Empty Memory on First Pass
• Frequent Buckets



¡ Observation: 
In pass 1 of A-Priori, most memory is idle

§ We store only individual item counts

§ Can we use the idle memory to reduce 
memory required in pass 2?

¡ Pass 1 of PCY: In addition to item counts, 

maintain a hash table with as many 

buckets as fit in memory 

§ Keep a count for each bucket into which 
pairs of items are hashed
§ For each bucket just keep the count, not the actual 

pairs that hash to the bucket!
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Note:
Bucket≠Basket



FOR (each basket) :
FOR (each item in the basket) :

add 1 to item’s count;
FOR (each pair of items) :

hash the pair to a bucket;
add 1 to the count for that bucket;

¡ Few things to note:
§ Pairs of items need to be generated from the input 

file; they are not present in the file
§ We are not just interested in the presence of a pair, 

but we need to see whether it is present at least s
(support) times
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¡ Observation: If a bucket contains a frequent pair, 
then the bucket is surely frequent

¡ However, even without any frequent pair, 
a bucket can still be frequent L
§ So, we cannot use the hash to eliminate any 

member (pair) of a “frequent” bucket
¡ But, for a bucket with total count less than s, 

none of its pairs can be frequent J
§ Pairs that hash to this bucket can be eliminated as 

candidates (even if the pair consists of 2 frequent items)

¡ Pass 2:
Only count pairs that hash to frequent buckets
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¡ Replace the buckets by a bit-vector:
§ 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

¡ 4-byte integer counts are replaced by bits, 
so the bit-vector requires 1/32 of memory

¡ Also, decide which items are frequent 
and list them for the second pass
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¡ Count all pairs {i, j} that meet the 
conditions for being a candidate pair:

1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in 

the bit vector is 1 (i.e., a frequent bucket)

¡ Both conditions are necessary for the 
pair to have a chance of being frequent
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¡ The MMDS book covers several other extensions 
beyond the PCY idea: “Multistage” and 
“Multihash”

¡ For reading on your own, Sect. 6.4 of MMDS

¡ Recommended video (starting about 10:10): 
https://www.youtube.com/watch?v=AGAkNiQnbjY
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https://www.youtube.com/watch?v=AGAkNiQnbjY


• Simple Algorithm
• Savasere-Omiecinski- Navathe (SON) Algorithm
• Toivonen’s Algorithm



¡ A-Priori, PCY, etc., take k passes to find 
frequent itemsets of size k

¡ Can we use fewer passes?

¡ Use 2 or fewer passes for all sizes, 
but may miss some frequent itemsets
§ Random sampling

§ Do not sneer; “random sample” is often a cure for the 
problem of having too large a dataset.

§ SON (Savasere, Omiecinski, and Navathe)
§ Toivonen
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¡ Take a random sample of the market baskets

¡ Run a-priori or one of its improvements
in main memory
§ So we don’t pay for disk I/O each 

time we increase the size of itemsets
§ Reduce support threshold 

proportionally 
to match the sample size
§ Example: if your sample is 1/100 of the baskets, use  
s/100 as your support threshold instead of s.
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¡ To avoid false positives: Optionally, verify that 
the candidate pairs are truly frequent in the 
entire data set by a second pass

¡ But you don’t catch sets frequent in the 
whole but not in the sample
§ Smaller threshold, e.g., s/125, helps catch more 

truly frequent itemsets
§ But requires more space
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¡ SON Algorithm: Repeatedly read small 
subsets of the baskets into main memory and 
run an in-memory algorithm to find all 
frequent itemsets
§ Note: we are not sampling, but processing the 

entire file in memory-sized chunks

¡ An itemset becomes a candidate if it is found 
to be frequent in any one or more subsets of 
the baskets.
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¡ On a second pass, count all the candidate 
itemsets and determine which are frequent in 
the entire set

¡ Key “monotonicity” idea: An itemset cannot 
be frequent in the entire set of baskets unless 
it is frequent in at least one subset
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Pass 1:
¡ Start with a random sample, but lower the 

threshold slightly for the sample:
§ Example: if the sample is 1% of the baskets, use 
s/125 as the support threshold rather than s/100

¡ Find frequent itemsets in the sample
¡ Add to the itemsets that are frequent in the 

sample the negative border of these itemsets:
§ Negative border: An itemset is in the negative 

border if it is not frequent in the sample, but all its 
immediate subsets are
§ Immediate subset = “delete exactly one element”

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52



¡ {A,B,C,D} is in the negative border if and only if:
1. It is not frequent in the sample, but

2. All of {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are.
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¡ Pass 1:
§ Start with the random sample, but lower the threshold 

slightly for the subset
§ Add to the itemsets that are frequent in the sample the 

negative border of these itemsets
¡ Pass 2:

§ Count all candidate frequent itemsets from the first pass, 
and also count sets in their negative border

¡ Key: If no itemset from the negative border turns out to 
be frequent, then we found all the frequent itemsets.
§ What if we find that something in the negative border is 

frequent?
§ We must start over again with another sample!
§ Try to choose the support threshold so the probability of failure is low, 

while the number of itemsets checked on the second pass fits in main-
memory.
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negative border.  How
far does the problem

go?


