
We will be releasing HW1 today
¡ It is due in 2 weeks (4/18 at 23:59pm)
¡ The homework is long
§ Requires proving theorems as well as coding

¡ Please start early

Recitation sessions:
¡ Spark Tutorial and Clinic:

Today 2:30-4:20pm in GWN 201 (Gowen Hall)

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 1

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

Supermarket shelf management –
Market-basket model:

¡ Goal: Identify items that are bought together by
sufficiently many customers

¡ Approach: Process the sales data collected with
barcode scanners to find dependencies among
items

¡ A classic rule:
§ If someone buys diaper and milk, then he/she is

likely to buy beer
§ Don’t be surprised if you find six-packs next to diapers!

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 3

¡ A large set of items
§ e.g., things sold in a

supermarket
¡ A large set of baskets
§ Each basket is a

small subset of items
§ e.g., the things one

customer buys on one day
¡ Discover association rules:

People who bought {x,y,z} tend to buy {v,w}
§ Example application: Amazon

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 4

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Basket Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

¡ A general many-to-many mapping
(association) between two kinds of things
§ But we ask about connections among “items”,

not “baskets”

¡ Items and baskets are abstract:
§ For example:

§ Items/baskets can be products/shopping basket

§ Items/baskets can be words/documents

§ Items/baskets can be basepairs/genes

§ Items/baskets can be drugs/patients

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 5

¡ Items = products; Baskets = sets of products

someone bought in one trip to the store

¡ Real market baskets: Chain stores keep TBs of

data about what customers buy together

§ Tells how typical customers navigate stores, lets

them position tempting items:

§ Apocryphal story of “diapers and beer” discovery

§ Used to position potato chips between diapers and beer to

enhance sales of potato chips

¡ Amazon’s ‘people who bought X also bought Y’

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 6

¡ Baskets = sentences; Items = documents in
which those sentences appear
§ Items that appear together too often could

represent plagiarism
§ Notice items do not have to be “in” baskets

¡ Baskets = patients; Items = drugs & side-effects
§ Has been used to detect combinations

of drugs that result in particular side-effects
§ But requires extension: Absence of an item

needs to be observed as well as presence
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 7

First: Define
Frequent itemsets
Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
A-Priori algorithm
PCY algorithm

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 8

¡ Simplest question: Find sets of items that
appear together “frequently” in baskets

¡ Support for itemset I: Number of baskets
containing all items in I
§ (Often expressed as a fraction

of the total number of baskets)

¡ Given a support threshold s,
then sets of items that appear
in at least s baskets are called
frequent itemsets

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 9

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of
{Beer, Bread} = 2

¡ Items = {milk, coke, pepsi, beer, juice}
¡ Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

¡ Frequent itemsets: {m}, {c}, {b}, {j},

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

, {b,c} , {c,j}.{m,b}

¡ Define: Association Rules:
If-then rules about the contents of baskets

¡ {i1, i2,…,ik} → j means: “if a basket contains
all of i1,…,ik then it is likely to contain j”

¡ In practice there are many rules, want to find
significant/interesting ones!

¡ Confidence of association rule is the
probability of j given I = {i1,…,ik}

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 11

)support(
)support()conf(

I
jIjI È

=®

¡ Not all high-confidence rules are interesting
§ The rule X → milk may have high confidence for

many itemsets X, because milk is just purchased very
often (independent of X) and the confidence will be
high

¡ Interest of an association rule I → j:
abs. difference between its confidence and
the fraction of baskets that contain j

§ Interesting rules are those with high positive or
negative interest values (usually above 0.5)

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 12

|]Pr[)conf(|)Interest(jjIjI -®=®

B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¡ Association rule: {m, b} →c
§ Support = 2
§ Confidence = 2/4 = 0.5
§ Interest = |0.5 – 5/8| = 1/8

§ Item c appears in 5/8 of the baskets
§ The rule is not very interesting!

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 13

¡ Problem: Find all association rules with
support ≥s and confidence ≥c
§ Note: Support of an association rule is the support

of the set of items in the rule (left and right side)
¡ Hard part: Finding the frequent itemsets!
§ If {i1, i2,…, ik} → j has high support and

confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 14

)support(
)support()conf(

I
jIjI È

=®

¡ Step 1: Find all frequent itemsets I
§ (we will explain this next)

¡ Step 2: Rule generation
§ For every subset A of I, generate a rule A → I \ A

§ Since I is frequent, A is also frequent
§ Variant 1: Single pass to compute the rule confidence

§ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)
§ Variant 2:

§ Observation: If A,B,C→D is below confidence, so is A,B→C,D
§ Can generate “bigger” rules from smaller ones!

§ Output the rules above the confidence threshold
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 15

)support(
)support()conf(

I
jIjI È

=®

B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, c, b, n} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¡ Support threshold s = 3, confidence c = 0.75
¡ Step 1) Find frequent itemsets:
§ {b,m} {b,c} {c,m} {c,j} {m,c,b}

¡ Step 2) Generate rules:
§ b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5
§ m→b: c=4/5 … b,m→c: c=3/4

b→c,m: c=3/6

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 16

¡ To reduce the number of rules, we can
post-process them and only output:
§ Maximal frequent itemsets:

No immediate superset is frequent
§ Gives more pruning

or
§ Closed itemsets:

No immediate superset has the same support (> 0)
§ Stores not only frequent information, but exact

supports/counts

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 17

Support Maximal(s=3) Closed
A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 18

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same support.

Its only super-
set, ABC, has
smaller support.

¡ Back to finding frequent itemsets
¡ Typically, data is kept in flat files

rather than in a database system:
§ Stored on disk
§ Stored basket-by-basket
§ Baskets are small but we have

many baskets and many items
§ Expand baskets into pairs, triples, etc.

as you read baskets
§ Use k nested loops to generate all

sets of size k

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 20

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,
and boundaries between

baskets are –1.Note: We want to find frequent itemsets. To find them, we have to
count them. To count them, we have to enumerate them.

¡ The true cost of mining disk-
resident data is usually the number
of disk I/Os

¡ In practice, association-rule
algorithms read the data in passes
– all baskets read in turn

¡ We measure the cost by the
number of passes an algorithm
makes over the data

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 21

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,
and boundaries between

baskets are –1.

¡ For many frequent-itemset algorithms,
main-memory is the critical resource
§ As we read baskets, we need to count

something, e.g., occurrences of pairs of items
§ The number of different things we can count

is limited by main memory
§ Swapping counts in/out is a disaster

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 22

¡ The hardest problem often turns out to be
finding the frequent pairs of items {i1, i2}
§ Why? Freq. pairs are common, freq. triples are rare

§ Why? Probability of being frequent drops exponentially
with size; number of sets grows more slowly with size

¡ Let’s first concentrate on pairs, then extend to
larger sets

¡ The approach:
§ We always need to generate all the itemsets

§ But we would only like to count (keep track) of those
itemsets that in the end turn out to be frequent

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 23

¡ Naïve approach to finding frequent pairs
¡ Read file once, counting in main memory

the occurrences of each pair:
§ From each basket of n items, generate its
n(n-1)/2 pairs by two nested loops

¡ Fails if (#items)2 exceeds main memory
§ Remember: #items can be

100K (Wal-Mart) or 10B (Web pages)
§ Suppose 105 items, counts are 4-byte integers
§ Number of pairs of items: 105(105-1)/2 » 5*109

§ Therefore, 2*1010 (20 gigabytes) of memory is needed
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

Goal: Count the number of occurrences of
each pair of items (i,j):

¡ Approach 1: Count all pairs using a matrix

¡ Approach 2: Keep a table of triples [i, j, c] =
“the count of the pair of items {i, j} is c.”
§ If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0
§ Plus some additional overhead for the hashtable

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 25

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 26

4 bytes per pair

Triangular Matrix Triples

12 per
occurring pair

Item i

Ite
m

 j

¡ Approach 1: Triangular Matrix
§ n = total number items
§ Count pair of items {i, j} only if i<j
§ Keep pair counts in lexicographic order:

§ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
§ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
§ Total number of pairs n(n –1)/2; total bytes= O(n2)
§ Triangular Matrix requires 4 bytes per pair

¡ Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

¡ Approach 2 beats Approach 1 if less than 1/3 of
possible pairs actually occur

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 27

Item i

Ite
m

 j

¡ Approach 1: Triangular Matrix
§ n = total number items
§ Count pair of items {i, j} only if i<j
§ Keep pair counts in lexicographic order:

§ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
§ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
§ Total number of pairs n(n –1)/2; total bytes= O(n2)
§ Triangular Matrix requires 4 bytes per pair

¡ Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

¡ Approach 2 beats Approach 1 if less than 1/3 of
possible pairs actually occur

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 28

Problem is if we have too
many items so the pairs
do not fit into memory.

Can we do better?

• Monotonicity of “Frequent”
• Notion of Candidate Pairs
• Extension to Larger Itemsets

¡ A two-pass approach called
A-Priori limits the need for
main memory

¡ Key idea: monotonicity
§ If a set of items I appears at

least s times, so does every subset J of I
¡ Contrapositive for pairs:

If item i does not appear in s baskets, then no
pair including i can appear in s baskets

¡ So, how does A-Priori find freq. pairs?
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 30

¡ Pass 1: Read baskets and count in main memory
the # of occurrences of each individual item

§ Requires only memory proportional to #items

¡ Items that appear ≥ " times are the frequent items

¡ Pass 2: Read baskets again and keep track of the
count of only those pairs where both elements
are frequent (from Pass 1)
§ Requires memory proportional to square of frequent

items only (for counts)
§ Plus a list of the frequent items (so you know what must

be counted)

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 31

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 32

Item counts

Pass 1 Pass 2

Frequent items
M

ai
n

m
em

or
y Counts of

pairs of
frequent items

(candidate
pairs)

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.

¡ You can use the
triangular matrix
method with n = number
of frequent items
§ May save space compared

with storing triples
¡ Trick: re-number

frequent items 1,2,…
and keep a table relating
new numbers to original
item numbers

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 33

Item counts

Pass 1 Pass 2

Counts of pairs
of frequent

items

Frequent
items

Old
item
IDs

M
ai

n
m

em
or

y

Counts of
pairs of

frequent items

¡ For each k, we construct two sets of
k-tuples (sets of size k):

§ Ck = candidate k-tuples = those that might be

frequent sets (support > s) based on information

from the pass for k–1
§ Lk = the set of truly frequent k-tuples

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 34

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

¡ Hypothetical steps of the A-Priori algorithm
§ C1 = { {b} {c} {j} {m} {n} {p} }
§ Count the support of itemsets in C1

§ Prune non-frequent. We get: L1 = { b, c, j, m }
§ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
§ Count the support of itemsets in C2

§ Prune non-frequent. L2 = { {b,m} {b,c} {c,m} {c,j} }
§ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
§ Count the support of itemsets in C3

§ Prune non-frequent. L3 = { {b,c,m} }
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 35

** Note here we generate new candidates by
generating Ck from Lk-1 and L1.
But that one can be more careful with candidate
generation. For example, in C3 we know {b,m,j}
cannot be frequent since {m,j} is not frequent

**

¡ One pass for each k (itemset size)
¡ Needs room in main memory to count

each candidate k–tuple
¡ For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most memory

¡ Many possible extensions:
§ Association rules with intervals:

§ For example: Men over 65 have 2 cars
§ Association rules when items are in a taxonomy

§ Bread, Butter → FruitJam
§ BakedGoods, MilkProduct → PreservedGoods

§ Lower the support s as itemset gets bigger
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 36

• Improvement to A-Priori
• Exploits Empty Memory on First Pass
• Frequent Buckets

¡ Observation:
In pass 1 of A-Priori, most memory is idle

§ We store only individual item counts

§ Can we use the idle memory to reduce
memory required in pass 2?

¡ Pass 1 of PCY: In addition to item counts,

maintain a hash table with as many

buckets as fit in memory

§ Keep a count for each bucket into which
pairs of items are hashed
§ For each bucket just keep the count, not the actual

pairs that hash to the bucket!
4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 38

Note:
Bucket≠Basket

FOR (each basket) :
FOR (each item in the basket) :

add 1 to item’s count;
FOR (each pair of items) :

hash the pair to a bucket;
add 1 to the count for that bucket;

¡ Few things to note:
§ Pairs of items need to be generated from the input

file; they are not present in the file
§ We are not just interested in the presence of a pair,

but we need to see whether it is present at least s
(support) times

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 39

New
in

PCY

¡ Observation: If a bucket contains a frequent pair,
then the bucket is surely frequent

¡ However, even without any frequent pair,
a bucket can still be frequent L
§ So, we cannot use the hash to eliminate any

member (pair) of a “frequent” bucket
¡ But, for a bucket with total count less than s,

none of its pairs can be frequent J
§ Pairs that hash to this bucket can be eliminated as

candidates (even if the pair consists of 2 frequent items)

¡ Pass 2:
Only count pairs that hash to frequent buckets

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 40

¡ Replace the buckets by a bit-vector:
§ 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

¡ 4-byte integer counts are replaced by bits,
so the bit-vector requires 1/32 of memory

¡ Also, decide which items are frequent
and list them for the second pass

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 41

¡ Count all pairs {i, j} that meet the
conditions for being a candidate pair:

1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in

the bit vector is 1 (i.e., a frequent bucket)

¡ Both conditions are necessary for the
pair to have a chance of being frequent

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 42

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 43

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table
for pairs

M
ai

n
m

em
or

y

Counts of
candidate

pairs

¡ The MMDS book covers several other extensions
beyond the PCY idea: “Multistage” and
“Multihash”

¡ For reading on your own, Sect. 6.4 of MMDS

¡ Recommended video (starting about 10:10):
https://www.youtube.com/watch?v=AGAkNiQnbjY

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 45

https://www.youtube.com/watch?v=AGAkNiQnbjY

• Simple Algorithm
• Savasere-Omiecinski- Navathe (SON) Algorithm
• Toivonen’s Algorithm

¡ A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k

¡ Can we use fewer passes?

¡ Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets
§ Random sampling

§ Do not sneer; “random sample” is often a cure for the
problem of having too large a dataset.

§ SON (Savasere, Omiecinski, and Navathe)
§ Toivonen

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 47

¡ Take a random sample of the market baskets

¡ Run a-priori or one of its improvements
in main memory
§ So we don’t pay for disk I/O each

time we increase the size of itemsets
§ Reduce support threshold

proportionally
to match the sample size
§ Example: if your sample is 1/100 of the baskets, use
s/100 as your support threshold instead of s.

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 48

Copy of
sample
baskets

Space
for

counts

M
ai

n
m

em
or

y

¡ To avoid false positives: Optionally, verify that
the candidate pairs are truly frequent in the
entire data set by a second pass

¡ But you don’t catch sets frequent in the
whole but not in the sample
§ Smaller threshold, e.g., s/125, helps catch more

truly frequent itemsets
§ But requires more space

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 49

¡ SON Algorithm: Repeatedly read small
subsets of the baskets into main memory and
run an in-memory algorithm to find all
frequent itemsets
§ Note: we are not sampling, but processing the

entire file in memory-sized chunks

¡ An itemset becomes a candidate if it is found
to be frequent in any one or more subsets of
the baskets.

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

¡ On a second pass, count all the candidate
itemsets and determine which are frequent in
the entire set

¡ Key “monotonicity” idea: An itemset cannot
be frequent in the entire set of baskets unless
it is frequent in at least one subset

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 51

Pass 1:
¡ Start with a random sample, but lower the

threshold slightly for the sample:
§ Example: if the sample is 1% of the baskets, use
s/125 as the support threshold rather than s/100

¡ Find frequent itemsets in the sample
¡ Add to the itemsets that are frequent in the

sample the negative border of these itemsets:
§ Negative border: An itemset is in the negative

border if it is not frequent in the sample, but all its
immediate subsets are
§ Immediate subset = “delete exactly one element”

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 52

¡ {A,B,C,D} is in the negative border if and only if:
1. It is not frequent in the sample, but

2. All of {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are.

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 53

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

¡ Pass 1:
§ Start with the random sample, but lower the threshold

slightly for the subset
§ Add to the itemsets that are frequent in the sample the

negative border of these itemsets
¡ Pass 2:

§ Count all candidate frequent itemsets from the first pass,
and also count sets in their negative border

¡ Key: If no itemset from the negative border turns out to
be frequent, then we found all the frequent itemsets.
§ What if we find that something in the negative border is

frequent?
§ We must start over again with another sample!
§ Try to choose the support threshold so the probability of failure is low,

while the number of itemsets checked on the second pass fits in main-
memory.

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 54

4/3/19 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 55

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border. How
far does the problem

go?

