
CSE 547: Machine Learning for Big Data Spring 2019

Problem Set 4
Please read the homework submission policies here.

Assignment Submission All students should submit their assignments electronically via
GradeScope. Students may typeset or scan their neatly written homeworks (points will
be deducted for illegible submissions). Simply sign up on Gradescope and use the course
code 97EWEW. Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Late Day Policy All students will be given two no-questions-asked late periods, but
only one late period can be used per homework and cannot be used for project deliverables.
A late-period lasts 48 hours from the original deadline (so if an assignment is due on Thurs-
day at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/19sp/info.html
https://www.cs.washington.edu/academics/misconduct

CSE 547: Mining Learning for Big Data - Problem Set 4 2

1 Implementation of SVM via Gradient Descent (25

points)

Here, you will implement the soft margin SVM using different gradient descent methods
as described in the section 12.3.4 of the textbook. To recap, given a dataset of n samples
{(xi, yi)}ni=1, where every d-dimensional feature vector xi ∈ Rd is associated with a label
yi ∈ {−1, 1}, to estimate the w, b of the soft margin SVM, we can minimize the cost
function:

f(w, b) =
1

2
‖w‖22 + C

n∑
i=1

max {0, 1− yi (w · xi + b)} (1)

In order to minimize the function, we first obtain the gradient with respect to w(j), the jth
item in the vector w, as follows.

∇w(j)f(w, b) =
∂f(w, b)

∂w(j)
= w(j) + C

n∑
i=1

∂L(xi, yi)

∂w(j)
(2)

and

∇bf(w, b) =
∂f(w, b)

∂b
= C

n∑
i=1

∂L(xi, yi)

∂b
(3)

where

∂L(xi, yi)

∂w(j)
=

{
0 if yi (w · xi + b) ≥ 1

−yix(j)i otherwise.

and

∂L(xi, yi)

∂b
=

{
0 if yi (w · xi + b) ≥ 1
−yi otherwise.

Now, we will implement and compare the following gradient descent techniques:

1. Batch Gradient Descent: Iterate through the entire dataset and update the param-
eters as follows:

CSE 547: Mining Learning for Big Data - Problem Set 4 3

Algorithm 1 Batch Gradient Descent (BGD)

Parameters: learning rate η.

1: k = 0
2: while convergence criteria not reached do
3: for j = 1, ..., d do
4: Update w(j) ← w(j) − η∇w(j)f(w, b)
5: end for
6: Update b← b− η∇bf(w, b)
7: Update k ← k + 1
8: end while

Note that in Algorithm 1, the values of ∇w(j)f(w, b) and ∇bf(w, b) are computed by
equations 2 and 3 repectively.

The convergence criterion for algorithm 1 is ∆%cost < ε, where

∆%cost =
|fk−1(w, b)− fk(w, b)| × 100

fk−1(w, b)
. (4)

where fk(w, b) is the regularized loss (equation 1) at k-th iteration.

For this method, set η = 3 · 10−7, ε = 0.25. Initialize w = 0, b = 0 and compute
f0(w, b) with these values. Compute ∆%cost at the end of each iteration of the while
loop.

2. Stochastic Gradient Descent: Go through the dataset and update the parameters,
one training sample at a time, as follows:

Algorithm 2 Stochastic Gradient Descent (SGD)

Parameters: learning rate η.

1: Randomly shuffle the training data
2: i = 1, k = 0
3: while convergence criteria not reached do
4: for j = 1, ..., d do
5: Update w(j) ← w(j) − η∇w(j)fi(w, b)
6: end for
7: Update b← b− η∇bfi(w, b)
8: Update i← (i mod n) + 1
9: Update k ← k + 1

10: end while

In Algorithm 2, ∇w(j)fi(w, b) and ∇bfi(w, b) are defined for the i-th training sample
as follows:

∇w(j)fi(w, b) =
∂fi(w, b)

∂w(j)
= w(j) + C

∂L(xi, yi)

∂w(j)

∇bfi(w, b) =
∂f(w, b)

∂b
= C

∂L(xi, yi)

∂b

CSE 547: Mining Learning for Big Data - Problem Set 4 4

The convergence criterion here is ∆
(k)
cost < ε, where

∆
(k)
cost = 0.5 ·∆(k−1)

cost + 0.5 ·∆%cost

where k is the iteration number and ∆%cost is same as above (equation 4).

For this method, use η = 0.0001, ε = 0.001. Initialize ∆
(0)
cost = 0, w = 0, b = 0 and

compute f0(w, b) with these values. Calculate ∆
(k)
cost and ∆%cost at the end of each

iteration of the while loop.

3. Mini-Batch Gradient Descent: Go through the dataset in batches of predetermined
size and update the parameters as follows:

Algorithm 3 Mini-Batch Gradient Descent (MBGD)

Parameters: learning rate η, batch sizeB.

1: Randomly shuffle the training data
2: l = 0, k = 0
3: while convergence criteria not reached do
4: for j = 1, ..., d do
5: Update w(j) ← w(j) − η∇w(j)fl(w, b)
6: end for
7: Update b← b− η∇bfl(w, b)
8: Update l← (l + 1 mod dn/Be)
9: Update k ← k + 1

10: end while

In Algorithm 3, ∇w(j)fl(w, b) and ∇bfl(w, b) are defined for the l-th mini-batch as
follows:

∇w(j)fl(w, b) =
∂fl(w, b)

∂w(j)
= w(j) + C

min{n,(l+1)·B})∑
i=l·B+1

∂L(xi, yi)

∂w(j)

∇bfl(w, b) =
∂fl(w, b)

∂b
= C

min{n,(l+1)·B})∑
i=l·B+1

∂L(xi, yi)

∂b

The convergence criterion here is ∆
(k)
cost < ε, where

∆
(k)
cost = 0.5 ·∆(k−1)

cost + 0.5 ·∆%cost

where k is the iteration number and ∆%cost is same as above (equation 4).

For this method, use η = 10−5, ε = 0.01 and B = 20. Initialize ∆
(0)
cost = 0, w = 0, b = 0

and compute f0(w, b) with these values. Calculate ∆
(k)
cost and ∆%cost at the end of each

iteration of the while loop.

CSE 547: Mining Learning for Big Data - Problem Set 4 5

(a) [25 Points]

Task: Implement the SVM algorithm for all of the above mentioned gradient descent tech-
niques.

Use C = 100 for all the techniques. For all other parameters, use the values specified in the
description of the technique. Note: update w in iteration i + 1 using the values computed
in iteration i. Do not update using values computed in the current iteration!

Run your implementation on the data set in q1/data. The data set contains the following
files :

1. features.txt : Each line contains the features (comma-separated values) of a single
sample. It has 6414 samples (rows) and 122 features (columns).

2. target.txt : Each line contains the target variable (y = -1 or 1) for the corresponding
row in features.txt.

Task: Plot the value of the cost function fk(w, b) vs. the iteration number k. Report the
total time taken for convergence by each of the gradient descent techniques. What do you
infer from the plots and the time for convergence?

The diagram should have graphs from all the three techniques on the same plot.

As a sanity check, Batch GD should converge in 10-300 iterations and SGD between 500-3000
iterations with Mini Batch GD somewhere in-between. However, the number of iterations
may vary greatly due to randomness. If your implementation consistently takes longer, it
may have a bug.

What to submit

(i) Plot of fk(w, b) vs. the number of updates (k). Total time taken for convergence by
each of the gradient descent techniques. Interpretation of plot and convergence times.
[part (a)]

(ii) Submit the code to Gradescope. [part (a)]

2 Decision Tree Learning (15 points)

In this problem, we want to construct a decision tree to find out if a person will enjoy coffee.

Definitions. Let there be k binary-valued attributes in the data.

CSE 547: Mining Learning for Big Data - Problem Set 4 6

We pick an attribute that maximizes the gain at each node:

G = I(D)− (I(DL) + I(DR)) (5)

where D is the given dataset, and DL and DR are the sets on left and right hand-side
branches after division. Ties may be broken arbitrarily.

There are three commonly used impurity measures used in binary decision trees: Entropy,
Gini index, and Classification Error. In this problem, we use Gini impurity and define I(D)
as follows1:

I(D) = |D| ·

(
1−

∑
i

p2i

)
,

where:

• |D| is the number of items in D.

• 1−
∑

i p
2
i is the Gini impurity.

• pi is the probability that an element sampled uniformly at random from D will have
label i ∈ {+,−}. Explicitly, p+ is the fraction of positive items and p− is the fraction
of negative items in D.

Note that this intuitively has the feel that the more evenly-distributed the numbers are, the
lower the

∑
i p

2
i , and the larger the impurity.

(a) [10 Points]

Let k = 3. We have three binary attributes that we could use: “likes tea”, “likes hiking”
and “likes chocolate ice cream”. Suppose the following:

• There are 100 people in our sample set, 75 of whom like coffee and 25 who don’t.

• Out of the 100 people, 50 like tea; out of those 50 people who like tea, 40 like coffee.

• Out of the 100 people, 70 like hiking; out of those 70 people who like hiking, 60 like
coffee.

• Out of the 100 people, 80 like chocolate ice cream; out of those 80 people who like
chocolate ice cream, 60 like coffee.

Task: What are the values of G (defined in Equation 5) for chocolate ice cream, tea and
hiking attributes? Which attribute would you use to split the data at the root if you were
to maximize the gain G using the Gini impurity metric defined above?

1As an example, if D has 10 items, with 4 positive items (i.e. 4 people who enjoy coffee), and 6 negative
items (i.e. 6 who do not), we have I(D) = 10 · (1− (0.16 + 0.36)).

CSE 547: Mining Learning for Big Data - Problem Set 4 7

(b) [5 Points]

Let’s consider the following example:

• There are 100 attributes with binary values a1, a2, a3, . . . , a100.

• Let there be one example corresponding to each possible assignment of 0’s and 1’s to
the values a1, a2, a3 . . . , a100. (Note that this gives us 2100 training examples.)

• Let the values taken by the target variable y depend on the values of a1 for 99% of
the samples. More specifically, of all the samples where a1 = 1, let 99% of them are
labeled +. Similarly, of all the samples where a1 = 0, let 99% of them are labeled with
−. (Assume that the values taken by y depend on a2, a3, . . . , a100 for fewer than 99%
of the samples).

• Assume that we build a complete binary decision tree (i.e., we use values of all at-
tributes).

Task: Explain what the decision tree will look like. (A one line explanation will suffice.)
Also, in 2-3 sentences, identify what the desired decision tree for this situation should look
like to avoid overfitting, and why.(The desired decision tree isn’t necessarily a complete
binary decision tree)

What to submit

(i) Values of G for chocolate ice cream, tea and hiking attributes. [part (a)]

(ii) The attribute you would use for splitting the data at the root. [part (a)]

(iii) Explain what the decision tree looks like in the described setting. Explain how a
decision tree should look like to avoid overfitting. (1-2 lines each) [part (b)]

3 Data Streams I (35 points)

You are an astronomer at the Space Telescope Science Institute in Baltimore, Maryland, in
charge of the petabytes of imaging data they recently obtained. According to the news report
linked in the previous sentence, “...The amount of imaging data is equivalent to two billion
selfies, or 30,000 times the total text content of Wikipedia. The catalog data is 15 times the
volume of the Library of Congress.”

This data stream has images of everything out there in the universe, ranging from stars,
galaxies, asteroids, to all kinds of awesome exploding/moving objects. Your task is to de-
termine the approximate frequencies of occurrences of different (unique) items in this data
stream.

https://phys.org/news/2019-01-world-largest-digital-sky-survey.html

CSE 547: Mining Learning for Big Data - Problem Set 4 8

We now introduce our notation for this problem. Let S = 〈a1, a2, . . . , at〉 be the given
data stream of length t. Let us denote the items in this data stream as being from the set
{1, 2, . . . , n}. For any 1 ≤ i ≤ n, we denote F [i] to be the number of times i has appeared
in S. Our goal is then to have good approximations of the values F [i] for all 1 ≤ i ≤ n at
all times.

The näıve way to do this is to just keep the counts for each item 1 ≤ i ≤ n separately.
However, this will require O(n) space which, in our application, is clearly infeasible. We
shall see that it is possible to approximate these counts using a much smaller amount of
space. To do so, we consider the algorithm explained below.

Algorithm. The algorithm has two parameters δ and ε > 0, and
⌈
log 1

δ

⌉
independent hash

functions
hj : {1, 2, . . . , n} → {1, 2, . . . ,

⌈e
ε

⌉
}.

Note that in this problem, log denotes the natural logarithm. For each bucket b of each hash
function j, the algorithm has a counter cj,b that is initialized to zero.

As each element i arrives in the data stream, it is hashed by the j hash functions, and the
count cj,hj(i) is incremented by 1.

For any 1 ≤ i ≤ n, we define F̃ [i] = minj{cj,hj(i)} as our estimate of F [i].

Task. The goal is to show that F̃ [i] as defined above provides a good estimate of F [i].

(a) [2 Points]

What is the memory usage of this algorithm (in Big-O notation)? Give a one or two line
justification for the value you provide.

(b) [3 Points]

Justify that for any 1 ≤ i ≤ n:
F̃ [i] ≥ F [i].

(c) [10 Points]

Prove that for any 1 ≤ i ≤ n and 1 ≤ j ≤ dlog(1
δ
)e:

E
[
cj,hj(i)

]
≤ F [i] +

ε

e
t.

CSE 547: Mining Learning for Big Data - Problem Set 4 9

(d) [10 Points]

Prove that:
Pr
[
F̃ [i] ≤ F [i] + εt

]
≥ 1− δ.

Hint: Use Markov inequality and the independence of hash functions.

Based on the proofs in parts (b) and (d), it can be inferred that F̃ [i] is a good approximation
of F [i] for any item i such that F [i] is not very small (compared to t). In many applications
(e.g., when the values F [i] have a heavy-tail distribution), we are indeed only interested in
approximating the frequencies for items which are not too infrequent. We next consider one
such application.

(e) [10 Points]

Warning. This implementation question requires substantial computation time Python
implementation reported to take 15min - 1 hour. Therefore, we advise you to start early.

Dataset. The dataset in q4/data contains the following files:

1. words stream.txt Each line of this file is a number, corresponding to the ID of a word
in the stream.

2. counts.txt Each line is a pair of numbers separated by a tab. The first number is
an ID of a word and the second number is its associated exact frequency count in the
stream.

3. words stream tiny.txt and counts tiny.txt are smaller versions of the dataset
above that you can use for debugging your implementation.

4. hash params.txt Each line is a pair of numbers separated by a tab, corresponding
to parameters a and b which you may use to define your own hash functions (See
explanation below).

Instructions. Implement the algorithm and run it on the dataset with parameters δ =
e−5, ε = e × 10−4. (Note: with this choice of δ you will be using 5 hash functions - the 5
pairs (a, b) that you’ll need for the hash functions are in hash params.txt). Then for each

distinct word i in the dataset, compute the relative error Er[i] = F̃ [i]−F [i]
F [i]

and plot these

values as a function of the exact word frequency F [i]
t

. (You do not have to implement
the algorithm in Spark.)

The plot should use a logarithm scale both for the x and the y axes, and there should be
ticks to allow reading the powers of 10 (e.g. 10−1, 100, 101 etc...). The plot should have a
title, as well as the x and y axes. The exact frequencies F [i] should be read from the counts

CSE 547: Mining Learning for Big Data - Problem Set 4 10

file. Note that words of low frequency can have a very large relative error. That is not a bug
in your implementation, but just a consequence of the bound we proved in question (a).

Answer the following question by reading values from your plot: What is an approximate
condition on a word frequency in the document to have a relative error below 1 = 100 ?

Hash functions. You may use the following hash function (see example pseudo-code),
with p = 123457, a and b values provided in the hash params file and n buckets (which is
equivalent to

⌈
e
ε

⌉
) chosen according to the specification of the algorithm. In the provided

file, each line gives you a, b values to create one hash function.

Returns hash(x) for hash function given by parameters a, b, p and n_buckets

def hash_fun(a, b, p, n_buckets, x)

{

y = x [modulo] p

hash_val = (a*y + b) [modulo] p

return hash_val [modulo] n_buckets

}

Note: This hash function implementation produces outputs of value from 0 to (n buckets−
1), which is different from our specification in the Strategy part. You can either keep the
range as {0, ..., n buckets − 1}, or add 1 to the hash result so the value range becomes
{1, ..., n buckets}, as long as you stay consistent within your implementation.

What to submit

(i) Expression for the memory usage of the algorithm and justification. [part (a)]

(ii) Proofs for parts (b)-(d).

(iii) Log-log plot of the relative error as a function of the frequency. Answer for which word
frequencies is the relative error below 1. [part (e)]

(iv) Submit the code to Gradescope. [part (e)]

4 Data Streams II (25 points)

We are in the same setup as the previous part, working with the stream S = 〈a1, a2, . . . , at〉
consisting of items from the set {1, 2, . . . , n}; the frequency of element i is again denoted
by F [i]. Impressed by the quality of your estimator for frequency of occurences of different
objects in the telescope’s data stream, you have been now tasked with estimating more
sophisticated summary statistics from this stream. We’ll now explore how to estimate the

CSE 547: Mining Learning for Big Data - Problem Set 4 11

sum of squared frequencies of all the items in the data stream. That is, we wish to estimate
M =

∑n
i=1(F [i])2. Here’s a proposed algorithm.

Algorithm.

• Fix a function h : [n] → {±1} that associates each item in the data stream with a
random sign.

• Initialize Z = 0.

• Every time an element j appears in the data stream, add h(j) to Z. That is, increment
Z if h(j) = +1 and decrement Z if h(j) = −1.

• After processing all the t elements in the data stream, return the estimate X = Z2

Note that since we fix h before we receive the data stream, an element j is treated consistently
every time it shows up: Z is either incremented every time j shows up or is decremented
every time j shows up. In the end, element j contributes h(j) · F [j] to the final value of Z.

(a) [10 Points]

Prove that
Eh[X] = M

(b) [15 Points]

Prove that
Var(X) ≤ 4M2

Thus, part (a) shows that the estimator designed in the given algorithm is unbiased, while
part (b) gives a bound on its variance.

What to submit

(i) Proof that Eh[X] = M . [parts (a)]

(ii) Proof that Var(X) ≤ 4M2. [part (b)]

	Implementation of SVM via Gradient Descent (25 points)
	Decision Tree Learning (15 points)
	Data Streams I (35 points)
	Data Streams II (25 points)

