
CSE 547/Stat 548: Machine Learning for Big Data Lecture by Adam Gustafson

Information Theoretic Metric Learning

Instructor: Sham Kakade

1 Metric Learning

In k-nearest neighbors (k-nn) and other classification algorithms, one crucial choice is what metric to use to char-
acterize distances between points. Suppose we are given features X = {x1, x2, . . . , xn} where each xi ∈ Rd with
associated class labels Y = {y1, . . . , yn}, and we seek to learn a k-nn classifier. Recall that if one uses the Euclidean
distance in k-nn, typically the first step is to normalize the features xi such that the sample mean is 0 and the sample
standard deviation is 1. I.e, we form new features

x̃i =
xi − x̄
sx

.

Given the test point z we employ this normalization to form a new feature z̃ and then find the k nearest neighbors in
X according to the Euclidean metric, and classify z according to majority vote of the associated labels in Y .

In [DKJ+07], the goal is to learn the metric itself rather than rely on the Euclidean metric and normalization. The
authors consider learning the squared Mahalanobis distance given a matrix A � 0 (i.e., a positive definite matrix),
which the authors denote

dA(x, y) = (x− y)TA(x− y).

Additionally, given the training data, one can denote a subset of points as similar (e.g., belong to the same class) and
those which are dissimilar (e.g., belong to different classes). Thus, two natural sets of constraints arise,

(i, j) ∈ S : dA(xi, xj) ≤ u,
(i, j) ∈ D : dA(xi, xj) ≥ `,

(1)

representing similar and dissimilar points respectively, where the user chooses the parameters u, `.

The authors of [DKJ+07] propose the following optimization problem to learn a metric from the data:

min
A�0

D`d(A,A0)

s.t. tr(A(xi − xj)(xi − xj)T ) ≤ u for (i, j) ∈ S,
tr(A(xi − xj)(xi − xj)T ) ≥ ` for (i, j) ∈ D.

(2)

Note that the constraints in (2) are precisely those stated (1), which follows from the invariance of the trace to cyclic
permutations (i.e., tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)). The objective function D`d(A,A0) we
develop in the sequel.
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2 Bregman Divergences

2.1 Definition and Properties

Suppose we have a strictly convex, differentiable function φ : Rd → R, defined over a convex set Ω = dom(φ) ⊂ Rd.
Given such a function, one generalized notion of a distance induced by such a function is as follows:

Definition 1 (Bregman Divergence). The Bregman divergence with respect to φ is a map Dφ : Ω × relint(Ω) → R,
defined as

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉,
where 〈x, y〉 = xT y denotes the usual inner product in Rm.

Intuitively, it should be clear from the definition that the Bregman divergence measures the error in first order approx-
imation of φ(x) around y.

The Bregman divergence is not a metric in the usual sense. In particular, Dφ(x, y) 6= Dφ(y, x) in general, and the
triangle inequality does not hold. We enumerate some of its properties (verify!):

• Non-negativity: Dφ(x, y) ≥ 0 with equality if and only if x = y.

– Follows directly from the first-order condition of strict convexity for the function φ.

• Strict Convexity in x: Dφ(x, y) is strictly convex in its first argument.

– Follows directly from the first-order condition of strict convexity for the function φ.

• (Positive) Linearity: Da1φ1+a2φ2
(x, y) = a1Dφ1

(x, y) + a2Dφ2
(x, y) given a1, a2 > 0.

• Gradient in x: ∇xDφ(x, y) = ∇φ(x)−∇φ(y).

• Generalized Law of Cosines: Dφ(x, y) = Dφ(x, z) +Dφ(z, y)− 〈∇φ(y)−∇φ(z), x− z〉.

– Follows directly from the definition. Compare to the law of cosines with in Euclidean spaces:

‖x− y‖22 = ‖x− z‖22 + ‖z − y‖22 − 2‖x− z‖2‖z − y‖2 cos∠xzy

Here are some examples of some Bregman divergences induced by strictly convex functions:

• Mahalanobis Distance: Given A � 0, let Ω = Rd and φ(x) = xTAx. Then Dφ(x, y) = (x− y)TA(x− y).

– Euclidean Metric: Letting φ(x) = ‖x‖22 results in the Euclidean metric Dφ(x, y) = ‖x− y‖22.

• Generalized Information Divergence: Let Ω = {x ∈ Rd | xi > 0 for all i}. Then φ(x) =
∑d
i=1 xi log xi

implies that Dφ(x, y) =
∑d
i=1

(
xi log(xi

yi
) + (xi − yi)

)
.

– Relative Entropy/Kullback-Leibler (KL) Divergence: Additionally require that 〈x, 1〉 = 1 for all x ∈
Ω. Then φ(x) =

∑d
i=1 xi log xi results in Dφ(x, y) =

∑d
i=1 xi log yi

xi
, the KL divergence between

probability mass functions x and y.

Finally, we introduce the concept of a Bregman projection onto a convex set.

Definition 2 (Bregman Projection). Given a Bregman Divergence Dφ : Ω × relint(Ω) → R, a closed convex set
K ⊂ Ω, and a point x ∈ Ω, the Bregman projection of x onto K is the unique (why?) point

x? = argminx̃∈K Dφ(x̃, x). (3)
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When we consider the function φ(x) = ‖x‖22, note that the Bregman projection corresponds to the orthogonal projec-
tion onto a convex set, i.e.,

x? = argminx̃∈K‖x̃− x‖22, (4)

so the Bregman projection generalizes the notion of an orthogonal projection. One can show that a generalization of
the Pythagorean theorem for such a projection x? holds. Given any y ∈ K, we have

Dφ(x, y) ≥ Dφ(x, x?) +Dφ(x?, y).

In the Euclidean case, note that by the law of cosines this implies the angle ∠xx?y is obtuse.

2.2 Matrix Bregman Divergences

Let Sn ⊂ Rn×n denote the space of real symmetric matrices. Given a strictly convex, differentiable function φ :
Sn → R, the Bregman matrix divergence [DT07] is defined as

Dφ(A,B) = φ(A)− φ(B)− 〈∇φ(B), A−B〉.

Note here that 〈A,B〉 = tr(AB) denotes the inner product on the space of symmetric matrices which induces the
Frobenius norm, i.e,

〈A,A〉 = ‖A‖2F ,

the sum of the squared entries of A. Usually the function φ will be determined by the composition of an eigenvalue
map with another convex function, e.g., φ = ϕ ◦ λ, where λ : Sn → Rn yields the eigenvalues of a symmetric matrix
in decreasing order.

2.2.1 The Log Det (Burg) Divergence and Properties

One important example yields the objective function employed in [DKJ+07]. By taking the Burg entropy of the
eigenvalues {λi}ni=1 of A, we have

φ(A) = −
n∑
i=1

log λi = − log

n∏
i=1

λi = − log detA,

which is a strictly convex function with domain of the positive definite cone [BV04]. Using this function yields the
so-called “Burg” or “log det” divergence,

D`d(A,B) = tr(AB−1)− log det(AB−1)− n. (5)

To see this, note that φ(A) − φ(B) = − log det(AB−1), the trace is invariant to cyclic permutations, and ∇φ(B) =
−B−1.

To deduce that ∇φ(X) = −X−1, one approach is given in [BV04] is to argue via a first-order approximation as
follows. Let Z = X + ∆X . Then

log detZ = log det(X1/2(I +X−1/2∆XX−1/2)X1/2)

= log detX + log det(I +X−1/2∆XX−1/2)

= log detX +

n∑
i=1

log(1 + λi),
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where λi denotes the ith largest eigenvalue of X−1/2∆XX−1/2. For small x the first order approximation yields
log(1 + x) ≈ x. Since ∆X is small in terms of its eigenvalues, it follows that the λi’s must be small, and

log detZ ≈ log detX +

n∑
i=1

λi

= log detX + tr(X−1/2∆XX−1/2)

= log detX + tr(X−1∆X)

= log detX + tr(X−1(Z −X)),

a first order approximation of log det at X . This could also be derived directly,

∂

∂Xij
log detX =

1

detX

∂ detX

∂Xij
=

1

detX
(adj(X))ji = (X−1)ji,

where adj(X) is the classical adjoint of a square invertible matrix X .

Important properties of the Burg matrix divergence are as follows:

• Given invertibleB, minimizingD`d(A,B) over a symmetric matrixA guarantees thatAwill be invertible given
the domain of the log determinant. Thus, one need not explicitly enforce A � 0 in (2).

• Given any invertible square matrix M , it is easy to verify that

D`d(A,B) = D`d(M
TAM, MTBM),

whence the divergence of (5) remains invariant under any rescaling of the feature space.

• The matrix divergence in equation (5) is (up to a constant) equivalent to the KL divergence between two mul-
tivariate Gaussian distributions with the same mean. Given Gaussian probability measures P1 and P2 with
associated densities p1 and p2, one may show the KL divergence is

DKL(P1‖P2) =

∫
p1(x) log

p1(x)

p2(x)
dx

=
1

2

(
tr
(
Σ−12 Σ1

)
− log det

(
Σ−12 Σ1

)
− n+ (µ2 − µ1)

T
Σ−12 (µ2 − µ1)

)
.

Thus, if we seek to minimize the Burg divergence of a matrix A � 0 with respect to a reference matrix A0, we
have

D`d(A,A0) = 2DKL(P0‖P ),

where the Gaussian distributions P and P0 have the same mean and covariance matricesA−1,A−10 , respectively.
Thus, given the usual interpretation of KL divergence, our objective function D`d(A,A0) measures the cost in
approximating a Gaussian distribution with precision matrix A in place of the precision matrix A0.

3 Computing Bregman Projections

3.1 Dykstra’s Cyclic Projection Algorithm

Consider the problem of finding a nearest point in the intersection of convex sets. We seek to solve (4) for the case
when a point x? ∈ K = ∩mi=1Ci where each Ci is convex. One intuitive algorithm is to cyclically project the current
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estimate onto each Ci until we find a point in K. That is, we let x0 = x in (4), and repeat the following for t ≥ 1 until
a point xt ∈ K is found:

xt = PC[t]m
(xt−1). (6)

Here [t]m denotes t modulo m and PC denotes the orthogonal projection onto a convex set C. This simple routine
is known as Dykstra’s cyclic projection algorithm. This algorithm is known to converge generally [DH06a, DH06b,
DH08]. In the special case of all Ci being half spaces that defines a polyhedral K, the algorithm converges linearly
[DH94], i.e.,

‖xt − PK(x)‖2 ≤ cρt‖x− PK(x)‖2
for all t for some constants c > 0, ρ ∈ (0, 1).

3.2 Generalized Dykstra’s Cyclic Projection Algorithm

The authors of [CR98] extended this idea to the case of the Bregman projection of equation (3), showing it converges
in the polyhedral case. The authors of [BL00] analyzed the problem generally, showing that it converges for any finite
intersection of convex sets. As far as I am aware, the rates of convergence are not well understood in general, or for
the special case of the algorithm employed in [DKJ+07], and remain an open question. Additionally, the costs of
projecting onto each Ci is non-trivial in general, but for the constraints employed in [DKJ+07], they may be computed
efficiently.

3.3 Bregman Projection of a Matrix onto Equality and Inequality Constraints

Presume we are solving a generalized Dykstra’s cyclic projection algorithm to minimize Dφ(A,A0) over an intersec-
tion of m convex sets, ∩mi=1Ci. Let the current iterate be At, and assume k = [t]m. Presume k is such that we must
solve the following equality-constrained projection for this iterate:

min
A�0

Dφ(A,At)

s.t. tr(ABk) = bk.
(7)

To solve (7), introducing the dual variable αk, we form the Lagrangian

L(X,αk) = Dφ(A,At) + αk(bk − tr(ABk)).

By setting the gradient with respect to A and αk to zero (recall the gradient in x property of Bregman divergence), we
obtain the Bregman projection At+1 onto Ck by solving

∇φ(A) = ∇φ(At) + αkBk

tr(ABk) = bk
(8)

for A and αk. If we instead had an inequality constraint, i.e.,

min
A�0

Dφ(A,At)

s.t. tr(ABk) ≤ bk,
(9)

we introduce the corresponding dual variable λk ≥ 0, which we set to 0 for all k ∈ {1, . . . ,m} when we start the
algorithm. Recall the KKT conditions require this dual variable to be non-negative. Thus, after solving (8) for αk, we
letting α′k = min(λk, αk), we update the Lagrange multiplier λk associated with constraint k as follows:

λk ← λk − α′k.
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Note that this ensures λk ≥ 0. Finally, we form the update At+1 by solving

∇φ(A) = ∇φ(At) + α′kBk

for A subject to tr(ABk) ≤ bk.

In the case where φ(A) = − log detA and the matrix Bk = zkz
T
k , we may avoid matrix inversion. In this case,

solving (8) reduces to solving
A = (At − αkzkzTk )−1,

bk = zTk Azk.
(10)

Recall the Sherman-Morrison inverse formula for an invertible matrix M ,

(M + uvT )−1 = M−1 − M−1uvTM−1

1 + vTM−1u
. (11)

Applying (11) to (10), letting p = zTk Atzk, and solving for A, it follows that our next iterate is

At+1 = At + βAtzkz
T
k At, (12)

where
αk =

1

p
− 1

b
,

β =
αk

1− αkp
.

4 The “Information-Theoretic” Metric Learning Algorithm

Given the previous section, the algorithm employed in [DKJ+07] should be straightforward to state by noticing that
each (i, j) in the constraint set of (2) corresponds to a constraint of the form of (9) with Bk = (xi − xj)(xi − xj)T .
However, it may be the case that the constraint set of (2) is empty. Thus, the authors introduce a vector of slack
variables ξ ∈ Rm corresponding to each of the m constraints in (2), initialized to ξ0 (whose components equal u for
similarity constraints and ` for dissimilarity constraints).

min
A�0, ξ

D`d(A,A0) + γ D`d(diag(ξ),diag(ξ0))

s.t. tr(A(xi − xj)(xi − xj)T ) ≤ ξc(i,j) for (i, j) ∈ S,
tr(A(xi − xj)(xi − xj)T ) ≥ ξc(i,j) for (i, j) ∈ D.

(13)

The parameter γ > 0 is a regularization parameter chosen via cross-validation. Given the development in the previous
section keeping in mind the linearity property of Bregman divergence, it is easy to verify their algorithm. Given a
matrix X ∈ Rd×n comprised of n training samples, a similarity set S, a dissimilarity set D, an input Mahalanobis
matrix A0, a slack parameter γ, and a constraint index function

c : {1, . . . , n} × {1, . . . , n} → {1, . . . ,m},

the algorithm is as follows:

1. Initialization:

(a) A← A0

(b) λij ← 0 for all i, j.
(c) ξc(i,j) ← u for (i, j) ∈ S.
(d) ξc(i,j) ← ` for (i, j) ∈ D.

6



2. Repeat Until Convergence:

(a) Pick a constraint (i, j) ∈ S or (i, j) ∈ D.

(b) p← (xi − xj)TA(xi − xj).

(c) δ ← 1 if (i, j) ∈ S, else δ ← −1 (if (i, j) ∈ D).

(d) α← min
(
λij ,

δ
2

(
1
p −

γ
ξc(i,j)

))
(e) β ← δα

1−δαp .

(f) ξc(i,j) ←
γξc(i,j)

γ+δαξc(i,j)
.

(g) λij ← λij − α.

(h) A← A+ βA(xi − xj)(xi − xj)TA.

3. Return: A.

Note that each constraint projection costs O(d2), so a single iteration of looping through each of the m constraints
costsO(md2). Typically this cost would beO(md3) in practice if we depended on a matrix inversion or an eigenvalue
decomposition for each of the constraints.

5 Empirical Results

Refer to [DKJ+07] for precise details of the datasets used and the algorithms employed, but we briefly review the
experiments run. The main experiments evaluated metric learning for k-nn classification with k = 4, averaged over 5
runs. The parameters ` and u were chosen, respectively, to be the 5-th and 95-th percentiles of the Euclidean distances
amongst points in the training set. The set S was constrained to be of points with the same class label, and the set
D was constrained to be points with different class labels. A total of 20c2 training points were chosen at random to
comprise S and D, where c is the number of classes in the data. The matrix A0 was chosen to be either the identity (so
the objective function corresponded to maximizing the entropy of a Gaussian) or the inverse of the sample covariance.
The parameter γ was chosen from {.01, .1, 1, 10} via two-fold cross-validation. The results on various datasets with
95% confidence intervals are shown below.

Note: The authors also developed an online version of their algorithm which we did not review here. See [DKJ+07]
for details.

7



References

[BL00] Heinz H Bauschke and Adrian S Lewis. Dykstras algorithm with bregman projections: A convergence
proof. Optimization, 48(4):409–427, 2000.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[CR98] Yair Censor and Simeon Reich. The dykstra algorithm with bregman projections. Communications in
Applied Analysis, 2(3):407–420, 1998.

[DH94] Frank Deutsch and Hein Hundal. The rate of convergence of Dykstra’s cyclic projections algorithm: The
polyhedral case. Numerical Functional Analysis and Optimization, 15(5-6):537–565, 1994.

[DH06a] Frank Deutsch and Hein Hundal. The rate of convergence for the cyclic projections algorithm i: angles
between convex sets. Journal of Approximation Theory, 142(1):36–55, 2006.

[DH06b] Frank Deutsch and Hein Hundal. The rate of convergence for the cyclic projections algorithm ii: norms of
nonlinear operators. Journal of Approximation Theory, 142(1):56–82, 2006.

[DH08] Frank Deutsch and Hein Hundal. The rate of convergence for the cyclic projections algorithm iii: Regu-
larity of convex sets. Journal of Approximation Theory, 155(2):155–184, 2008.

[DKJ+07] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic metric
learning. In Proceedings of the 24th international conference on Machine learning, pages 209–216. ACM,
2007.

[DT07] Inderjit S Dhillon and Joel A Tropp. Matrix nearness problems with bregman divergences. SIAM Journal
on Matrix Analysis and Applications, 29(4):1120–1146, 2007.

8


