CSE 547/Stat 548: Machine Learning for Big Data Lecture by Adam Gustafson
Information Theoretic Metric Learning

Instructor: Sham Kakade

1 Metric Learning

In k-nearest neighbors (k-nn) and other classification algorithms, one crucial choice is what metric to use to char-
acterize distances between points. Suppose we are given features X = {1, 7a,...,7,} where each ; € R¢ with
associated class labels Y = {y1, ..., yn}, and we seek to learn a k-nn classifier. Recall that if one uses the Euclidean
distance in k-nn, typically the first step is to normalize the features z; such that the sample mean is 0 and the sample
standard deviation is 1. I.e, we form new features

Given the test point z we employ this normalization to form a new feature Z and then find the k£ nearest neighbors in
X according to the Euclidean metric, and classify z according to majority vote of the associated labels in ).

In [DKJ*T07], the goal is to learn the metric itself rather than rely on the Euclidean metric and normalization. The
authors consider learning the squared Mahalanobis distance given a matrix A > 0 (i.e., a positive definite matrix),
which the authors denote

da(z,y) = (z —y)" Az —y).

Additionally, given the training data, one can denote a subset of points as similar (e.g., belong to the same class) and
those which are dissimilar (e.g., belong to different classes). Thus, two natural sets of constraints arise,

(4,7) € St da(zi,z;) <w, o
(4,7) € D: da(xg,x;) > ¢,
representing similar and dissimilar points respectively, where the user chooses the parameters u, £.
The authors of [DKJ+07] propose the following optimization problem to learn a metric from the data:
in Dyy(A A
min ea(A, Ao)
st tr(A(z; — xj)(z; —245)T) < wfor (i,5) € S, @)

tr(A(x; — ;) (2, —2;)T) > Lfor (i,5) € D.

Note that the constraints in (2) are precisely those stated (1), which follows from the invariance of the trace to cyclic
permutations (i.e., tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)). The objective function Dyg(A, Ag) we
develop in the sequel.



2 Bregman Divergences

2.1 Definition and Properties
Suppose we have a strictly convex, differentiable function ¢ : R — R, defined over a convex set = dom(¢) C R9.
Given such a function, one generalized notion of a distance induced by such a function is as follows:

Definition 1 (Bregman Divergence). The Bregman divergence with respect to ¢ is a map Dy :  x relint(Q) — R,
defined as

Dy(z,y) = ¢(x) — d(y) — (Vo(y), = — y),

where (z,y) = Ty denotes the usual inner product in R™.

Intuitively, it should be clear from the definition that the Bregman divergence measures the error in first order approx-
imation of ¢(z) around y.

The Bregman divergence is not a metric in the usual sense. In particular, Dy (z,y) # Dg(y, ) in general, and the
triangle inequality does not hold. We enumerate some of its properties (verify!):

e Non-negativity: Dy(z,y) > 0 with equality if and only if z = y.

— Follows directly from the first-order condition of strict convexity for the function ¢.

Strict Convexity in x: Dy(x,y) is strictly convex in its first argument.

— Follows directly from the first-order condition of strict convexity for the function ¢.

(Positive) Linearity: D, ¢, +a,6,(%,y) = a1Dg, (,y) + azDg, (x,y) given ai, az > 0.
Gradient in xv: VoDg(x,y) = Vo(z) — Vo(y).
Generalized Law of Cosines: Dy(x,y) = Dg(x,2) + Dg(z,y) — (Vo(y) — Vo(2),z — 2).

— Follows directly from the definition. Compare to the law of cosines with in Euclidean spaces:

lz = yll3 = llz = 2[I3 + 1z = ylI3 - 2llz = 2ll2[lz — y|2 cos Lzzy
Here are some examples of some Bregman divergences induced by strictly convex functions:

e Mahalanobis Distance: Given A = 0, let Q = R? and ¢(z) = 2T Az. Then Dy(z,y) = (z — y)TA(z — y).

— Euclidean Metric: Letting ¢(x) = ||z||3 results in the Euclidean metric Dy (z,y) = ||z — y||3.

e Generalized Information Divergence: Let Q = {x € R? | x; > Oforalli}. Then ¢(x) = Z?:l x; logz;
implies that Dy (x,y) = Zle <a:z log(7t) + (@i — y,)) .

— Relative Entropy/Kullback-Leibler (KL) Divergence: Additionally require that (x,1) = 1 for all z €
Q. Then ¢(x) = Zle x;logz; results in Dy(x,y) = Zj’:l r;log ¥, the KL divergence between
probability mass functions x and y. '

Finally, we introduce the concept of a Bregman projection onto a convex set.

Definition 2 (Bregman Projection). Given a Bregman Divergence Dy : Q X relint(Q) — R, a closed convex set
K C Q, and a point x € §Q, the Bregman projection of x onto K is the unique (why?) point

x* = argmingc - Dy(Z, x). (3)



When we consider the function ¢(z) = ||z||3, note that the Bregman projection corresponds to the orthogonal projec-
tion onto a convex set, i.e.,
~ ~ 2
x* = argming i || — |3, 4)

so the Bregman projection generalizes the notion of an orthogonal projection. One can show that a generalization of
the Pythagorean theorem for such a projection x* holds. Given any y € K, we have

Dy(z,y) = Dy (x,27) + Dy (2", y).

In the Euclidean case, note that by the law of cosines this implies the angle Zxz*y is obtuse.

2.2 Matrix Bregman Divergences

Let S™ C R™ ™ denote the space of real symmetric matrices. Given a strictly convex, differentiable function ¢ :
S™ — R, the Bregman matrix divergence [DT07] is defined as

Dy(A, B) = ¢(A) = ¢(B) — (Vo(B), A - B).

Note here that (A, B) = tr(AB) denotes the inner product on the space of symmetric matrices which induces the
Frobenius norm, i.e,

(4,4) = ||AlI%,

the sum of the squared entries of A. Usually the function ¢ will be determined by the composition of an eigenvalue
map with another convex function, e.g., ¢ = ¢ o A, where A : S™ — R" yields the eigenvalues of a symmetric matrix
in decreasing order.

2.2.1 The Log Det (Burg) Divergence and Properties

One important example yields the objective function employed in [DKJT07]. By taking the Burg entropy of the
eigenvalues {\;}7_; of A, we have

d(A) = — Zlog)\i = —logH)\Z- = —logdet A,
i=1 i=1
which is a strictly convex function with domain of the positive definite cone [BV04]. Using this function yields the
so-called “Burg” or “log det” divergence,
Dyg(A, B) = tr(AB™1) —logdet(AB™!) — n. 5)

To see this, note that ¢(A) — ¢(B) = — logdet(AB~1), the trace is invariant to cyclic permutations, and V¢(B) =
—-B~ 1.

To deduce that Vo¢(X) = —X !, one approach is given in [BV04] is to argue via a first-order approximation as
follows. Let Z = X + AX. Then

logdet Z = log det(X Y/2(I + X 1/2AX X~1/2) x1/2)
= logdet X +logdet(]+X_1/2AXX_1/2)

= logdet X + Zlog(l + \i),
i=1



where \; denotes the ith largest eigenvalue of X ~'/2AX X ~1/2. For small z the first order approximation yields
log(1 + «) =~ x. Since AX is small in terms of its eigenvalues, it follows that the A;’s must be small, and

logdet Z ~ logdet X + Z A
i=1
= logdet X +tr(X~Y/2AXX1/?)
=logdet X + tr(XtAX)
= logdet X + tr(X 1(Z — X)),

a first order approximation of log det at X . This could also be derived directly,

1 OdetX 1
_detX aX” _detX

(adj(X))ji = (X~ 1)ji,

where adj(X) is the classical adjoint of a square invertible matrix X.
Important properties of the Burg matrix divergence are as follows:
e Given invertible B, minimizing D4 (A, B) over a symmetric matrix A guarantees that A will be invertible given
the domain of the log determinant. Thus, one need not explicitly enforce A > 0 in (2).

e Given any invertible square matrix M, it is easy to verify that
Dyy(A, B) = Dyg(MT AM, M BM),
whence the divergence of (5) remains invariant under any rescaling of the feature space.

e The matrix divergence in equation (5) is (up to a constant) equivalent to the KL divergence between two mul-
tivariate Gaussian distributions with the same mean. Given Gaussian probability measures P; and P, with
associated densities p; and ps, one may show the KL divergence is

(@) dx
2

p2()

1
3 (tr (25121) — log det (25121) —n+ (e — ,ul)T E;l (1o — ,ul)) .

Dir(Pi|P) = /pl(ﬂﬁ) log

Thus, if we seek to minimize the Burg divergence of a matrix A >~ 0 with respect to a reference matrix Ay, we

have
Dyq(A, Ay) = 2Dk (FPo||P),

where the Gaussian distributions P and P, have the same mean and covariance matrices A~1, Ay 1 respectively.
Thus, given the usual interpretation of KL divergence, our objective function Dyg(A, Ag) measures the cost in
approximating a Gaussian distribution with precision matrix A in place of the precision matrix Ag.

3 Computing Bregman Projections

3.1 Dykstra’s Cyclic Projection Algorithm

Consider the problem of finding a nearest point in the intersection of convex sets. We seek to solve (4) for the case
when a point * € K = N2, C; where each C; is convex. One intuitive algorithm is to cyclically project the current



estimate onto each C; until we find a point in K. That is, we let xg = « in (4), and repeat the following for ¢ > 1 until
a point z; € K is found:

Ty = PC[t]m (xt—l)' (6)

Here [t],, denotes ¢t modulo m and P¢ denotes the orthogonal projection onto a convex set C. This simple routine
is known as Dykstra’s cyclic projection algorithm. This algorithm is known to converge generally [DHO6a, DHO6b,
DHO8]. In the special case of all C; being half spaces that defines a polyhedral K, the algorithm converges linearly
[DH94], i.e.,

lze = Prc(@)ll2 < cp'lle — P (x)]|2

for all ¢ for some constants ¢ > 0, p € (0, 1).

3.2 Generalized Dykstra’s Cyclic Projection Algorithm

The authors of [CR98] extended this idea to the case of the Bregman projection of equation (3), showing it converges
in the polyhedral case. The authors of [BL0OO] analyzed the problem generally, showing that it converges for any finite
intersection of convex sets. As far as [ am aware, the rates of convergence are not well understood in general, or for
the special case of the algorithm employed in [DKJT07], and remain an open question. Additionally, the costs of
projecting onto each C; is non-trivial in general, but for the constraints employed in [DKJT07], they may be computed
efficiently.

3.3 Bregman Projection of a Matrix onto Equality and Inequality Constraints

Presume we are solving a generalized Dykstra’s cyclic projection algorithm to minimize D4 (A, Ao) over an intersec-
tion of m convex sets, N7, C;. Let the current iterate be A;, and assume k = [t],,. Presume k is such that we must
solve the following equality-constrained projection for this iterate:

in Dy(A4,A
min - Dy (4, Ar) -
S.t. tI‘(ABk) = by.
To solve (7), introducing the dual variable oy, we form the Lagrangian

L(X,ar) = D¢(A, Ap) + ag (b, — tr(ABg)).

By setting the gradient with respect to A and oy, to zero (recall the gradient in x property of Bregman divergence), we
obtain the Bregman projection A;;1 onto C, by solving

Vo(A) = Vo(Ar) + arBi

8
for A and «ay,. If we instead had an inequality constraint, i.e.,
min  Dy(A, Ay)
A0 (9)
s.t. tI‘(ABk) < by,
we introduce the corresponding dual variable A, > 0, which we set to O for all k € {1,...,m} when we start the

algorithm. Recall the KKT conditions require this dual variable to be non-negative. Thus, after solving (8) for oy, we
letting o), = min(\g, o), we update the Lagrange multiplier ), associated with constraint & as follows:

/
Ak <—)\k—ak.



Note that this ensures A;, > 0. Finally, we form the update A, by solving
Vé(A) = Vé(Ar) + . Bi
for A subject to tr(ABy,) < by.

In the case where ¢(A) = —logdet A and the matrix B, = zkzg, we may avoid matrix inversion. In this case,
solving (8) reduces to solving
A= (A —apzpzf)7H,

b = 2} Az
Recall the Sherman-Morrison inverse formula for an invertible matrix M,
M1y M1
14+ 0T M1y

(10)

(M 4wy ™t =Mt - (11)

Applying (11) to (10), letting p = 2] A; 2y, and solving for A, it follows that our next iterate is
App1 = Ay + BAzizf Ay, (12)

where

SRR

8=

1—oyp

4 The “Information-Theoretic’’ Metric Learning Algorithm

Given the previous section, the algorithm employed in [DKJ™07] should be straightforward to state by noticing that

each (i, j) in the constraint set of (2) corresponds to a constraint of the form of (9) with By, = (z; — z;)(z; — z;)7.

However, it may be the case that the constraint set of (2) is empty. Thus, the authors introduce a vector of slack
variables ¢ € R™ corresponding to each of the m constraints in (2), initialized to £, (whose components equal u for
similarity constraints and ¢ for dissimilarity constraints).

Jnin, Dya(A, Ao) + v Dya(diag(€), diag(&o))

st tr(A(z — @) (2 — 25)T) < &y for (4,4) € S, (13)

tr(A(z; — ) (v, — 2)7) > &e(iyy) for (4,7) € D.
The parameter v > 0 is a regularization parameter chosen via cross-validation. Given the development in the previous
section keeping in mind the linearity property of Bregman divergence, it is easy to verify their algorithm. Given a

matrix X € R4*"™ comprised of n training samples, a similarity set S, a dissimilarity set D, an input Mahalanobis
matrix Ao, a slack parameter -, and a constraint index function

c:{1,...,n}x{1,...,n} = {1,...,m},

the algorithm is as follows:

1. Initialization:
(a) A — AQ
(b) Ai; « Oforalli, j.
(©) (i) < ufor (i,7) € S.



2. Repeat Until Convergence:
(a) Pick a constraint (i, j) € Sor (i,5) € D.
®) p <+ (v, — )T A(z; — ;).
(c) 0+ 1if (i,5) € S,else § « —1 (if (4,5) € D).
(d) a < min (Aij, g(l Y ))

P e
oo
(e) ﬂ A lfgap'
o YEe(i,5)
(f) gc(lﬂ) A 'y+6a£c(i,j) :

(&) Aij < Aij — .
(h) A« A+ BA(z; — ;) (z; — x))T A

3. Return: A.

Note that each constraint projection costs O(d?), so a single iteration of looping through each of the m constraints
costs O(md?). Typically this cost would be O(md?) in practice if we depended on a matrix inversion or an eigenvalue
decomposition for each of the constraints.

5 Empirical Results

Refer to [DKJ+07] for precise details of the datasets used and the algorithms employed, but we briefly review the
experiments run. The main experiments evaluated metric learning for k-nn classification with k = 4, averaged over 5
runs. The parameters ¢ and u were chosen, respectively, to be the 5-th and 95-th percentiles of the Euclidean distances
amongst points in the training set. The set S was constrained to be of points with the same class label, and the set
D was constrained to be points with different class labels. A total of 20c? training points were chosen at random to
comprise S and D, where c is the number of classes in the data. The matrix Ay was chosen to be either the identity (so
the objective function corresponded to maximizing the entropy of a Gaussian) or the inverse of the sample covariance.
The parameter v was chosen from {.01,.1,1,10} via two-fold cross-validation. The results on various datasets with
95% confidence intervals are shown below.

Note: The authors also developed an online version of their algorithm which we did not review here. See [DKJT07]
for details.
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