“Geometric” data structures:

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade

©Sham Kakade 2017 1

Announcements:

* HW3 posted

* Today:
— Review: LSH for Euclidean distance
— Other ideas: KD-trees, ball trees, cover trees

Image Search...

eee00 Verizon LTE 11:26 AM @ 3 90% =) eeeee \erizon LTE 1:10 PM @ 3 54% W

5 Q bitter melon
Q & bitter melon ¢ '

Organic Authority
5 Bitter Melon Recipes: The Ancient
Healing Fruit

bitter melon stir fry

Images may be subject to copyright.

Z Visit page < Share

=
==

e
B
=

Related images VIEW ALL

LSH for Euclidean distance

The family of hash functions:

Recall R, cR, P1, P2

Pre-processing time:

Query time:

What other guarantees might we hope for?

Recall sorting:

LSH:
Voronoi:

How about other “geometric” data structures?

What is the ‘key’ inequality to exploit?

KD-Trees

Smarter approach: kd-trees

[Structured organization of documents

Recursively partitions points into axis
aligned boxes.

[J Enables more efficient pruning of
search space
Examine nearby points first.

lgnore any points that are further
than the nearest point found so far.

kd-trees work “well” in “low-
medium” dimensions

1 We'll get back to this...

KD-Tree Construction

Pt X Y

1 | 0.00 | 0.00
2 | 1.00 | 4.31
3 [013 | 2.85

Start with a list of d-dimensional points.

KD-Tree Construction

NO @\YES

Pt

X

2

1.00

4.31

Pt X Y
1 |0.00|0.00
3 (013|285

Split the points into 2 groups by:

[0 Choosing dimension d; and value V (methods to be discussed...)

[1 Separating the points into :Ufjj> V and lej<= V.

KD-Tree Construction

NO @\YES

Pt

X

2

1.00

4.31

Pt X Y
1 |0.00|0.00
3 (013|285

Consider each group separately and possibly split again (along

same/different dimension).

(1 Stopping criterion to be discussed...

KD-Tree Construction

o o NO @\YES
° Pt X Y
2 (1.00]| 4.31
o NO YE
ole® Pt | X Y Pt | X Y
o
" 3 /013|285 1 | 0.00 | 0.00

Consider each group separately and possibly split again (along
same/different dimension).
(1 Stopping criterion to be discussed...

KD-Tree Construction

SN T N

0 i I é/\b /\
o e S \bcs’ CS/\ea\bcs’ é/\b\b é/é’\b\b

Continue splitting points in each set
[] creates a binary tree structure

Each leaf node contains a list of points

©Sham Kakade 2017 11

KD-Tree Construction

/\

J. ® ®
s | 6‘@8“@@“@@“@

SbSd db

Keep one additional piece of information at each node:
[0 The (tight) bounds of the points at or below this node.

©Sham Kakade 2017

12

KD-Tree Construction

Use heuristics to make splitting decisions:
Which dimension do we split along?

Which value do we split at?

When do we stop?

Many heuristics...

T % pope " ﬁ

U

median heuristic

L L

gﬁ
i
o

center-of-range heuristic

Nearest Neighbor with KD Trees

SN T N

1 | é/\b /\

L oo CS,cs’\b\b CS,cs’\b\b of cs’\b\b

Traverse the tree looking for the nearest neighbor of the query
point.

Nearest Neighbor with KD Trees

N e AN

el T cS/\b o/\‘o

e é’\bé’\ccs’\bcs’\b

Examine nearby points first:

1 Explore branch of tree closest to the query point first.

©Sham Kakade 2017

16

Nearest Neighbor with KD Trees

Examine nearby points first:

N
1T CS/\b/

Tl &> o o

§bJd D

1 Explore branch of tree closest to the query point first.

©Sham Kakade 2017

ogo/
o

17

Nearest Neighbor with KD Trees

N N

D Ry d/\b /\
o e S \bcs’ CS/\ea\bcs’ é/\b\b d’\b\b

When we reach a leaf node:

1 Compute the distance to each point in the node.

©Sham Kakade 2017

Nearest Neighbor with KD Trees

N GRIPAN

D ey d/\b /\
o 4 T I S \bcs’ CS/\ea\bcs’ é/\b\b d’\b\b

When we reach a leaf node:

1 Compute the distance to each point in the node.

©Sham Kakade 2017

Nearest Neighbor with KD Trees

TE AL

e ’ cS/\b o/\‘o

N B ISP N

Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees

T A

1 | é/\b /\

L oo CS,cs’\b\b CS,cs’\b\b of ij\b

Each time a new closest node is found, update the distance
bound

©Sham Kakade 2017

Nearest Neighbor with KD Trees

N

é/\b /\

& £ g5 &b

§bJd D

of

)

Using the distance bound and bounding box of each node:

[0 Prune parts of the tree that could NOT include the nearest neighbor

Nearest Neighbor with KD Trees

e A

kL] 428

|

fll AR

\O\b
oo

Using the distance bound and bounding box of each node:

[0 Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

23

Nearest Neighbor with KD Trees

Using the distance bound and bounding box of each node:
[J Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

24

Complexity

For (nearly) balanced, binary trees...

Construction
1 Size:
] Depth:
1 Median + send points left right:
1 Construction time:
1-NN query
1 Traverse down tree to starting point:
[Maximum backtrack and traverse:
1 Complexity range:

Under some assumptions on distribution of points, we
get O(logN) but exponential in d (see citations in reading)

Complexity

|

it

K-NN with KD Trees

A\ N

4'._‘//° o/\o /\
AR LY. LY. LY.

Exactly the same algorithm, but maintain distance as distance to
furthest of current k nearest neighbors

Complexity is:

©Sham Kakade 2017 27

Approximate K-NN with KD Trees

R T

D) .

N

O/\O /\

iRt

SbH8d gt

Before: Prune when distance to bounding box >

Now: Prune when distance to bounding box >

£ SFRC

Will prune more than allowed, but can guarantee that if we return a neighbor at
distance 77, then there is no neighbor closer than T/Oz.

In practice this bound is loose...Can be closer to optimal.

Saves lots of search time at little cost in quality of nearest neighbor.

©Sham Kakade 2017

28

What about NNs searches
in high dimensions?

KD-trees:
[0 What is going wrong?

(1 Can this be easily fixed?

What do have to utilize?

1 utilize triangle inequality of metric

1 New ideas: ball trees and cover trees

Ball Trees

Ball-tree Example

level 1 level 2

level 3 level 4

L

Ball Tree Construction

Node:

1 Every node defines a ball (hypersphere), containing

a subset of the the points (to be searched)
A center
A (tight) radius of the points
Construction:
[1 Root: start with a ball which contains all the data
(] take a ball and make two children (nodes) as follows:

Make two spheres, assign each point (in the parent
sphere) to its closer sphere

Make the two spheres in a “reasonable” manner

Ball Tree Search

Given point x, how do find its nearest neighbor quickly?

Approach:
[1 Start: follow a greedy path through the tree

1 Backtrack and prune: rule out other paths based on the
triange inequality
(just like in KD-trees)

How good is it?
[1 Guarantees:
1 Practice:

Cover trees

What about exact NNs in general metric spaces?

Same ldea: utilize triangle inequality of metric (so
allow for arbitrary metric)

What does the dimension even mean?

cover-tree idea:

Intrinsic Dimension

How does the volume grow, from radius R to 2R?

Can we relax this idea to get at the “intrinsic”
dimension?

(1 This is the “doubling” dimension:

NN complexities

Query time |Space Preprocessing
used time
Vornoi 0(2d log n) O(nd/2) O(I”ld/2)
Kd-tree 0(2d log n) O(n) O(n log n)
LSH O(np lOg n) O(nl P) 0(n1+,0 log n)

