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Announcements:

* HW3 posted

* Today:
— Review: LSH for Euclidean distance
— Other ideas: KD-trees, ball trees, cover trees
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LSH for Euclidean distance

The family of hash functions:

Recall R, cR, P1, P2

Pre-processing time:

Query time:



What other guarantees might we hope for?

Recall sorting:

LSH:
Voronoi:

How about other “geometric” data structures?

What is the ‘key’ inequality to exploit?



KD-Trees

Smarter approach: kd-trees

[ Structured organization of documents

Recursively partitions points into axis
aligned boxes.

[J Enables more efficient pruning of
search space
Examine nearby points first.

lgnore any points that are further
than the nearest point found so far.

kd-trees work “well” in “low-
medium” dimensions

1 We'll get back to this...




KD-Tree Construction
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Start with a list of d-dimensional points.




KD-Tree Construction
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Split the points into 2 groups by:

[0 Choosing dimension d; and value V (methods to be discussed...)

[1 Separating the points into :Ufjj> V and lej<= V.




KD-Tree Construction
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Consider each group separately and possibly split again (along

same/different dimension).

(1 Stopping criterion to be discussed...




KD-Tree Construction
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Consider each group separately and possibly split again (along
same/different dimension).
(1 Stopping criterion to be discussed...



KD-Tree Construction
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Continue splitting points in each set
[] creates a binary tree structure

Each leaf node contains a list of points
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KD-Tree Construction
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Keep one additional piece of information at each node:
[0 The (tight) bounds of the points at or below this node.
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KD-Tree Construction

Use heuristics to make splitting decisions:
Which dimension do we split along?

Which value do we split at?

When do we stop?



Many heuristics...
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Nearest Neighbor with KD Trees
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Traverse the tree looking for the nearest neighbor of the query
point.



Nearest Neighbor with KD Trees
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Examine nearby points first:

1 Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD Trees

Examine nearby points first:
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1 Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD Trees
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When we reach a leaf node:

1 Compute the distance to each point in the node.
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Nearest Neighbor with KD Trees

N GRIPAN

D ey d/\b /\
o 4 T I S \bcs’ CS/\ea\bcs’ é/\b\b d’\b\b

When we reach a leaf node:

1 Compute the distance to each point in the node.
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Nearest Neighbor with KD Trees
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Then backtrack and try the other branch at each node visited



Nearest Neighbor with KD Trees
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Each time a new closest node is found, update the distance
bound
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Nearest Neighbor with KD Trees
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Using the distance bound and bounding box of each node:

[0 Prune parts of the tree that could NOT include the nearest neighbor



Nearest Neighbor with KD Trees
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Using the distance bound and bounding box of each node:

[0 Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees

Using the distance bound and bounding box of each node:
[J Prune parts of the tree that could NOT include the nearest neighbor
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Complexity

For (nearly) balanced, binary trees...

Construction
1 Size:
] Depth:
1 Median + send points left right:
1 Construction time:
1-NN query
1 Traverse down tree to starting point:
[ Maximum backtrack and traverse:
1 Complexity range:

Under some assumptions on distribution of points, we
get O(logN) but exponential in d (see citations in reading)



Complexity
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K-NN with KD Trees
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Exactly the same algorithm, but maintain distance as distance to
furthest of current k nearest neighbors

Complexity is:
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Approximate K-NN with KD Trees
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Before: Prune when distance to bounding box >

Now: Prune when distance to bounding box >

£ SFRC

Will prune more than allowed, but can guarantee that if we return a neighbor at
distance 77, then there is no neighbor closer than T/Oz.

In practice this bound is loose...Can be closer to optimal.

Saves lots of search time at little cost in quality of nearest neighbor.
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What about NNs searches
in high dimensions?

KD-trees:
[0 What is going wrong?

(1 Can this be easily fixed?

What do have to utilize?

1 utilize triangle inequality of metric

1 New ideas: ball trees and cover trees



Ball Trees

Ball-tree Example

level 1 level 2

level 3 level 4

L




Ball Tree Construction

Node:

1 Every node defines a ball (hypersphere), containing

a subset of the the points (to be searched)
A center
A (tight) radius of the points
Construction:
[1 Root: start with a ball which contains all the data
(] take a ball and make two children (nodes) as follows:

Make two spheres, assign each point (in the parent
sphere) to its closer sphere

Make the two spheres in a “reasonable” manner



Ball Tree Search

Given point x, how do find its nearest neighbor quickly?

Approach:
[1 Start: follow a greedy path through the tree

1 Backtrack and prune: rule out other paths based on the
triange inequality
(just like in KD-trees)

How good is it?
[1 Guarantees:
1 Practice:



Cover trees

What about exact NNs in general metric spaces?

Same ldea: utilize triangle inequality of metric (so
allow for arbitrary metric)

What does the dimension even mean?

cover-tree idea:



Intrinsic Dimension

How does the volume grow, from radius R to 2R?

Can we relax this idea to get at the “intrinsic”
dimension?

(1 This is the “doubling” dimension:



NN complexities

Query time |Space Preprocessing
used time
Vornoi 0(2d log n) O(nd/2 ) O(I”ld/2 )
Kd-tree 0(2d log n) O(n) O(n log n)
LSH O(np lOg n) O(nl P ) 0(n1+,0 log n)




