"Geometric" data structures:

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Announcements:

HW3 posted

- Today:
 - Review: LSH for Euclidean distance
 - Other ideas: KD-trees, ball trees, cover trees

Image Search...

LSH for Euclidean distance

The family of hash functions:

- Recall R, cR, P1, P2
- Pre-processing time:

Query time:

What other guarantees might we hope for?

Recall sorting:

- LSH:
- Voronoi:

How about other "geometric" data structures?

What is the 'key' inequality to exploit?

KD-Trees

- Smarter approach: kd-trees
 - Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.
- kd-trees work "well" in "lowmedium" dimensions
 - □ We'll get back to this...

Pt	Х	Υ
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85

Start with a list of d-dimensional points.

- Split the points into 2 groups by:
 - \square Choosing dimension d_i and value V (methods to be discussed...)
 - $\hfill\Box$ Separating the points into $x_{dj}^i \!\!>\! \mbox{V}$ and $x_{dj}^i \!\!<\! = \mbox{V}.$

- Consider each group separately and possibly split again (along same/different dimension).
 - ☐ Stopping criterion to be discussed...

- Consider each group separately and possibly split again (along same/different dimension).
 - ☐ Stopping criterion to be discussed...

- Continue splitting points in each set
 - creates a binary tree structure
- Each leaf node contains a list of points

- Keep one additional piece of information at each node:
 - ☐ The (tight) bounds of the points at or below this node.

- Use heuristics to make splitting decisions:
- Which dimension do we split along?

Which value do we split at?

When do we stop?

Many heuristics...

median heuristic

center-of-range heuristic

Traverse the tree looking for the nearest neighbor of the query point.

- Examine nearby points first:
 - □ Explore branch of tree closest to the query point first.

- Examine nearby points first:
 - □ Explore branch of tree closest to the query point first.

- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

Then backtrack and try the other branch at each node visited

Each time a new closest node is found, update the distance bound

- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

- Using the distance bound and bounding box of each node:
 - ☐ Prune parts of the tree that could NOT include the nearest neighbor

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - ☐ Size:
 - □ Depth:
 - Median + send points left right:
 - □ Construction time:
- 1-NN query
 - ☐ Traverse down tree to starting point:
 - Maximum backtrack and traverse:
 - □ Complexity range:
- Under some assumptions on distribution of points, we get O(logN) but exponential in d (see citations in reading)

Complexity

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:

Approximate K-NN with KD Trees

- Before: Prune when distance to bounding box >
- **Now:** Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α .
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

What about NNs searches in high dimensions?

- KD-trees:
 - □ What is going wrong?

☐ Can this be easily fixed?

- What do have to utilize?
 - □ utilize triangle inequality of metric
 - □ New ideas: ball trees and cover trees

Ball Trees

Ball-tree Example

Ball Tree Construction

Node:

- □ Every node defines a ball (hypersphere), containing
 - a subset of the the points (to be searched)
 - A center
 - A (tight) radius of the points

Construction:

- □ Root: start with a ball which contains all the data
- □ take a ball and make two children (nodes) as follows:
 - Make two spheres, assign each point (in the parent sphere) to its closer sphere
 - Make the two spheres in a "reasonable" manner

Ball Tree Search

- Given point x, how do find its nearest neighbor quickly?
- Approach:
 - □ Start: follow a greedy path through the tree
 - Backtrack and prune: rule out other paths based on the triange inequality
 - (just like in KD-trees)
- How good is it?
 - ☐ Guarantees:
 - □ Practice:

Cover trees

What about exact NNs in general metric spaces?

Same Idea: utilize triangle inequality of metric (so allow for arbitrary metric)

What does the dimension even mean?

cover-tree idea:

Intrinsic Dimension

How does the volume grow, from radius R to 2R?

Can we relax this idea to get at the "intrinsic" dimension?

☐ This is the "doubling" dimension:

NN complexities

	Query time	Space used	Preprocessing time
Vornoi	$O(2^d \log n)$	$O(n^{d/2})$	$O(n^{d/2})$
Kd-tree	$O(2^d \log n)$	O(n)	$O(n \log n)$
LSH	$O(n^{\rho} \log n)$	$O(n^{1+\rho})$	$O(n^{1+\rho}\log n)$