Optimization in the “Big Data” Regime

Sham M. Kakade

Machine Learning for Big Data
CSE547/STAT548

University of Washington
goal: find a d-dim parameter vector which minimizes the loss on n training examples.

- have n training examples $(x_1, y_1), \ldots (x_n, y_n)$
- have parametric a classifier $h_\theta(x, w)$, where w is a d dimensional vector.

$$\min_w L(w) \text{ where } L(w) = \sum_i \text{loss}(h(x_i, w), y_i)$$

“Big Data Regime”: How do you optimize this when n and d are large? memory? parallelization?

Can we obtain linear time algorithms to find an ϵ-accurate solution? i.e. find \hat{w} so that

$$L(\hat{w}) - \min_w L(w) \leq \epsilon$$
Plan:

- Goal: algorithms to get fixed target accuracy ϵ.
- Review: classical optimization viewpoints
- A modern view: can be bridge classical optimization to modern problems?
 - Dual Coordinate Descent Methods
 - Stochastic Variance Reduced Gradient method (SVRG)
Abstraction: Least Squares

\[
\min_w L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2
\]

How much computation time is required to get \(\epsilon \) accuracy?

- \(n \) points, \(d \) dimensions.
- “Big Data Regime”: How do you optimize this when \(n \) and \(d \) are large?
- More general case: Optimize sums of convex (or non-convex functions?
 - some guarantees will still hold

Aside: think of \(x \) as a large feature representation.
min \(L(w) \) where \(L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda ||w||^2 \)

solution:

\[w = (X^\top X + \lambda I)^{-1} X^\top Y \]

where \(X \) be the \(n \times d \) matrix whose rows are \(x_i \), and \(Y \) is an \(n \)-dim vector.

numerical solution: the “backslash” implementation.

time complexity: \(O(nd^2) \) and memory \(O(d^2) \)

Not feasible due to both time and memory.
Review: Gradient Descent (and Conjugate GD)

\[
\min_w L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2
\]

- \(n\) points, \(d\) dimensions,
- \(\lambda_{\text{max}}, \lambda_{\text{min}}\) are max and min eigs. of “design matrix” \(\frac{1}{n} \sum_i x_i x_i^\top\)
- \# iterations and computation time to get \(\epsilon\) accuracy:
 - Gradient Descent (GD):
 \[
 \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \log \frac{1}{\epsilon}, \quad \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} n d \log \frac{1}{\epsilon}
 \]
 - Conjugate Gradient Descent:
 \[
 \sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}} \log \frac{1}{\epsilon}, \quad \sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}} n d \log \frac{1}{\epsilon}
 \]
- memory: \(O(d)\)

Better runtime and memory, but still costly.
Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t,

sample a point (x_i, y_i)

$$w \leftarrow w - \eta (w \cdot x_i - y_i)x_i$$

Problem: even if $w = w^*$, the update changes w.

Rate: convergence rate is $O(1/\epsilon)$, with decaying η.

Simple algorithm, light on memory, but poor convergence rate.
SGD update rule: at each time t,

sample a point (x_i, y_i)

$$w \leftarrow w - \eta (w \cdot x_i - y_i)x_i$$
SGD update rule: at each time t,

$$w \leftarrow w - \eta (w \cdot x_i - y_i)x_i$$

Problem: even if $w = w_*$, the update changes w.

Rate: convergence rate is $O(1/\epsilon)$, with decaying η simple algorithm, light on memory, but poor convergence rate
\(\lambda_{\text{min}} \) is the min eig. of \(\frac{1}{n} \sum_i x_i x_i^\top \)

Suppose gradients are bounded by \(B \).

To get \(\epsilon \) accuracy:

- # iterations to get \(\epsilon \)-accuracy:
 \[
 \frac{B^2}{\lambda_{\text{min}} \epsilon}
 \]

- Computation time to get \(\epsilon \)-accuracy:
 \[
 \frac{dB^2}{\lambda_{\text{min}} \epsilon}
 \]
Regression in the big data regime?

$$\min_w L(w)$$

How much computation time is required to get ϵ accuracy?

“Big Data Regime”: How do you optimize this when n and d are large?

- Can we ’fix’ the instabilities of SGD?

Let’s look at (regularized) linear regression.

- Convex optimization: All results can be generalized to smooth+strongly convex loss functions.

- Non-convex optimization: some ideas generalize.
Duality (without Duality)

\[w = (X^\top X + \lambda I)^{-1} X^\top Y \]
\[= X^\top (XX^\top + \lambda I)^{-1} Y \]
\[:= \frac{1}{\lambda} X^\top \alpha \]

where \(\alpha = (I + XX^\top / \lambda)^{-1} Y \).

- **idea:** let’s compute the n-dim vector \(\alpha \).
- let’s do this with coordinate ascent
SDCA: stochastic dual coordinate ascent

\[G(\alpha_1, \alpha_2, \ldots \alpha_n) = \frac{1}{2} \alpha^\top (I + XX^\top / \lambda) \alpha - Y^\top \alpha \]

- the minimizer of \(G(\alpha) \) is

\[\alpha = (I + XX^\top / \lambda)^{-1} Y \]

- SDCA:
 - start with \(\alpha = 0 \).
 - choose coordinate \(i \) randomly, and update:

\[\alpha_i = \text{argmin}_z G(\alpha_1, \ldots \alpha_{i-1}, z, \ldots, \alpha_n) \]

- easy to do as we touch just one datapoint.
- return \(w = \frac{1}{\lambda} X^\top \alpha \).
SDCA: the algorithm

\[G(\alpha_1, \alpha_2, \ldots \alpha_n) = \frac{1}{2} \alpha^\top (I + XX^\top / \lambda) \alpha - Y^\top \alpha \]

1. start with \(\alpha = 0, \ w = \frac{1}{\lambda} X^\top \alpha \).
2. choose coordinate \(i \) randomly, and compute difference:
 \[\Delta \alpha_i = \frac{(y_i - w \cdot x_i) - \alpha_i}{1 + \|x_i\|^2 / \lambda} \]
3. update:
 \[\alpha_i \leftarrow \alpha_i + \Delta \alpha_i, \quad w \leftarrow w + \frac{1}{\lambda} x_i \cdot \Delta \alpha_i \]
4. return \(w = \frac{1}{\lambda} X^\top \alpha \).
Guarantees: speedups for the big data regime

- \(n \) points, \(d \) dimensions, \(\lambda_{av} \) average eigenvalue

Computation time to get \(\epsilon \) accuracy gradient descent: (Shalev-Shwartz & Zhang ’12)

- GD vs SDCA:

\[
\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} n d \log \frac{1}{\epsilon} \rightarrow \left(n + d \frac{\lambda_{av}}{\lambda_{\text{min}}} \right) d \log \frac{1}{\epsilon}
\]

- conjugate GD vs acceleration+SDCA.
 One can accelerate SDCA as well. (Frosting, Ge, K., Sidford, 2015)
Comparisons to GD

- both algorithms touch one data point at a time, with same computational cost per iteration.
- SDCA has “learning rate” which adaptive to the data point.
- GD has convergence rate of $1/\epsilon$ and SDCA has log $1/\epsilon$ convergence rate.
- memory: SDCA: $O(n + d)$, SGD: $O(d)$
- SDCA: can touch points in any order.
What about more general convex problems? e.g.

\[
\min_w L(w) \text{ where } L(w) = \sum_i \text{loss}(h(x_i, w), y_i)
\]

- The basic idea (formalized with duality) is pretty general for convex loss(·).
- Works very well in practice.

Memory: SDCA needs $O(n + d)$ memory, while SGD is only $O(d)$.

What about an algorithm for non-convex problems?
- SDCA seems heavily tied to the convex case.
- Would an algo that is highly accurate in the convex case and sensible in the non-convex case.
(another idea) Stochastic Variance Reduced Gradient (SVRG)

1. **exact gradient computation:** at stage s, using \tilde{w}_s, compute:

$$\nabla L(\tilde{w}_s) = \frac{1}{n} \sum_{i=1}^{n} \nabla \text{loss}(\tilde{w}_s, (x_i, y_i))$$

2. **corrected SGD:** initialize $w \leftarrow \tilde{w}_s$. for m steps,

 sample a point (x, y)

 $$w \leftarrow w - \eta \left(\nabla \text{loss}(w, (x, y)) - \nabla \text{loss}(\tilde{w}_s, (x, y)) + \nabla L(\tilde{w}_s) \right)$$

3. **update and repeat:** $\tilde{w}_{s+1} \leftarrow w$.

Two ideas:

- If $\tilde{w}_s = w^*$, then no update.
- unbiased updates: blue term is mean 0.
Stochastic Variance Reduced Gradient (SVRG)

1. **exact gradient computation:** at stage s, using \tilde{w}_s, compute:

\[
\nabla L(\tilde{w}_s) = \frac{1}{n} \sum_{i=1}^{n} \nabla \text{loss}(\tilde{w}_s, (x_i, y_i))
\]

2. **corrected SGD:** initialize $w \leftarrow \tilde{w}_s$. for m steps,

sample a point (x, y)

\[
w \leftarrow w - \eta \left(\nabla \text{loss}(w, (x, y)) - \nabla \text{loss}(\tilde{w}_s, (x, y)) + \nabla L(\tilde{w}_s) \right)
\]

3. **update and repeat:** $\tilde{w}_{s+1} \leftarrow w$.

Two ideas:

- If $\tilde{w} = w_*$, then no update.
- unbiased updates: **blue term** is mean 0.
Guarantees of SVRG

- n points, d dimensions, λ_{av} average eigenvalue

- Computation time to get ϵ accuracy gradient descent: (Johnson & Zhang '13)
 - GD vs SDCA:
 \[
 \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} n d \log \frac{1}{\epsilon} \rightarrow \left(n + d \frac{\lambda_{av}}{\lambda_{\text{min}}} \right) d \log \frac{1}{\epsilon}
 \]
 - conjugate GD vs ??
 \[
 \sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}} n d \log \frac{1}{\epsilon} \rightarrow ??
 \]
 - memory: $O(d)$