
CSE 547/Stat 548: Machine Learning for Big Data Lecture

Multi-Armed Bandits: Non-adaptive and Adaptive Sampling

Instructor: Sham Kakade

1 The (stochastic) multi-armed bandit problem

The basic paradigm is as follows:

• K Independent Arms: a ∈ {1, . . .K}

• Each arm a returns a random reward Ra if pulled.
(simpler case) assume Ra is not time varying.

• Game:

– You chose arm at at time t.

– You then observe:
Xt = Rat

where Rat is sampled from the underlying distribution of that arm.

Critically, the distribution over Ra is not known.

1.1 Regret: an “online” performance measure

Our objective is to maximize our long term reward. We have a (possibly randomized) sequential strategy/algorithmA,
which is of the form:

at = A(a1, X1, a2, X2, . . . at−1, Xt−1)

In T rounds, our reward is:

E[
T∑
t=1

Xt|A]

where the expectation is with respect to the reward process and our algorithm.

Suppose:
µa = E[Ra] ,

and let us assume 0 ≤ µa ≤ 1. Also, define:
µ∗ = max

a
µa .

In T rounds and in expectation, the best we can do is obtain µ∗T .

We will measure our performance by our expected regret, defined as follows: In T rounds, our (observed) regret is:

µ∗T −
T∑
t=1

Xt|A
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and our expected regret is:

µ∗T − E

[
T∑
t=1

Xt|A

]
where the expectation is with the randomness in our outcomes (and possibly our algorithm if it is randomized).

1.2 Caveat:

Our presentation in these notes will be loose in terms of log(·) factors, in both K and T . There are multiple good
treatments that provide improvements in terms of these factors.

2 Review: Hoeffding’s bound

With N samples, denote the sample mean as:

µ̂ =
1

N

∑
t

Xt .

Lemma 2.1. Supposing that the Xt’s have an i.i.d. distribution and are bounded between 0 and 1, then, with proba-
bility greater than 1− δ, we have that

|µ̂− µ| ≤
√

log(2/δ)

2N
.

3 Warmup: A non-adaptive strategy

Suppose we first pull each arm τ times, in an exploration phase. Then, for the remainder of the T steps, we pull the
arm which had the best observed reward during the exploration phase.

By the union bound, with probability greater than 1− δ, for all actions a,

|µ̂a − µa| ≤ O
√

log(K/δ)

τ
.

To see this, we simply make our error probability to be δ/K, to the total error probability is δ. Thus all the confidence
intervals will hold.

During the exploration rounds, our cumulative regret is at most Kτ , a trivial upper bound. During the exploitation
rounds, let us bound our cumulative regret for the remainder of T −Kτ . Note that for the arm i that we pull, we must
have that:

µ̂i ≥ µ̂i∗
where i∗ is an optimal arm. This implies that

µi ≥ µ∗ − c
√

log(K/δ)

τ

where c is a universal constant. To see this, note that by construction of the algorithm µ̂i ≥ µ̂i∗ , which implies

µi ≥ µ̂i − |µ̂i − µi| ≥ µ̂i∗ − |µ̂i − µi| ≥ µi∗ − |µ̂i − µi| − |µ̂i∗ − µi∗ | ,

and the claim follows using the confidence interval bounds.
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Hence, our total regret is:

µ∗T −
T∑
t=1

Xt ≤ τK +O
√

log(K/δ)

τ
(T −Kτ)

Now let us optimize for τ .

Lemma 3.1. (Regret of the non-adaptive strategy) The total expected regret of the non-adaptive strategy is:

µ∗T − E

[
T∑
t=1

Xt

]
≤ cK1/3T 2/3(log T )1/3

where c is a universal constant.

Proof. Choose τ = K2/3T 2/3 and δ = 1/T 2. Note that with probability greater than 1− 1/T 2, our regret is bounded
by (K1/3T 2/3(log(KT ))1/3). Also, if we ’fail’, the largest regret we can pay is T , and this occurs with probability
less than 1/T 2, so the reget is:

exp. regret ≤ Pr(no failure event) ∗K1/3T 2/3(log(KT ))1/3 + Pr(failure event)T

≤ c(1− 1/T 2)K1/3T 2/3(log(KT ))1/3 +
1

T
.

This shows that the regret is bounded as O(K1/3T 2/3(log(KT ))1/3). For T > K, log(KT ) ≤ 2 log T (and for
K < T , the claimed regret bound is trivially true). This completes the proof (for a different universal constant).

3.1 A (minimax) optimal adaptive algorithm

We will now provide an optimal (up to log factors) algorithms (optimal under the i.i.d. assumption for the rewards are
distributed and using that the rewards are upper bounded by 1).

Let Na,t be the number of times we pulled arm a up to time t. The question is what arm should pull a time t+ 1?

3.2 Confidence bounds

If we don’t care about log factors, then the following is a straightforward argument to see that our confidence bounds
will simultaneously hold for all times t (from 0 to∞) and all K arms.

Lemma 3.2. With probability greater than 1− δ, we will have that for all times t ≥ K, all a ∈ [K],

|µ̂a,t − µa| ≤ c

√
log(t/δ)

Na,t

where c is a universal constant.

Proof. We will actually prove a stronger statement: suppose that we observe the outcome of every arm, we will first
provide a probabilistic statement for the confidence intervals of all the arms (and for all sample sizes). Let us apply
Hoeffding’s bound with an error probability of δ/(Kτ2). Specifically, for the arm a with τ samples, we have that with
probability greater than 1− δ/(Kτ2):

|µ̂a,τ − µa| ≤ c
√

log(τK/δ)

τ
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(by a straightforward application of Hoeffding’s bound). Now that the total error probability over all arms an over
sample size τ is: ∑

a

∞∑
τ=0

δ

Kτ2
= δπ2/6

(the π2/6 is from Basel’s problem). Note the sum is finite, which means the error total probability for all of these
confidence intervals is less than a constant ∗ δ.

We have thus shown the following (note the quantifiers): with probability greater than 1 − δ, that for all arms a and
all sample sizes τ ≥ 1 that:

|µ̂a,τ − µa| ≤ c
√

log(τK/δ)

τ
,

(for a possibility different constant c). Observe that the confidence bounds that any algorithm uses at time t is due to
having Na,t samples, so we can now apply the above bound in this case, where:

c

√
log(Na,tK/δ)

Na,t
≤ c

√
log(tK/δ)

Na,t

sinceNa,t ≤ t. This shows that these confidence bounds are valid for all times t and all arms a. The proof is completed
by nothing for t ≥ K, log(Kt) ≤ 2 log t.

3.3 The Upper Confidence Bound (UCB) Algorithm

• At each time t,

– Pull arm:

at = argmax µ̂a,t + c

√
log(t/δ)

Na,t

:= argmax µ̂a,t + ConfBounda,t

(where c ≤ 10 is a constant).
– Observe reward Xt.
– Update µa,t, Na,t, and ConfBounda,t.

With probability greater than 1− δ all the confidence bounds will hold for all arms and all times t.

3.4 Analysis of UCB

If pull arm a at time t, what is our instantaneous regret, i.e. what is:

µ∗ − µat ≤?

Let i∗ be an optimal arm. Note by construction of the algorithm we have, if we pull arm a at time t, then:

ˆ̂µa,t + ConfBounda,t ≥ µ̂i∗ + ConfBoundi∗ ≥ µi∗ ,

the last step follows due to that µi∗ is contained within the confidence interval for i∗.

Using this we have that:

µat ≥ µ̂a,t − ConfBounda,t
≥ µ̂i∗ − 2ConfBounda,t
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Theorem 3.3. (UCB regret) The total expected regret of UCB is:

µ∗T − E

[
T∑
t=1

Xt

]
≤ c

√
KT log T

for an appropriately chosen universal constant c.

Proof. The expected regret is bounded as:

µ∗T − E

[
T∑
t=1

Xt

]
≤ 2

∑
t

ConfBounda,t

≤ 2c
∑
t

√
log(t/δ)

Na,t

≤ 2c
√
log(T/δ)Na,T . (1)

Note the following constraint on the Na,T ’s must hold:∑
a

Na,T = T

One can now show the worst case setting of Na,T that makes Equation 1 as large as possible (subject to this constraint
on the Na,T ’s) is when Na,t = T/K. Finally, to obtain the expected regret bound, the proof is identical to that of the
previous argument (in the non-adaptive case, where we choose δ = 1/T 2).
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