
Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n
training examples.

have n training examples (x1, y1), . . . (xn, yn)

have parametric a classifier h(x ,w), where w is d dimensional.

min
∑

i

loss(h(xi ,w), yi)

“Big Data Regime”: How do you optimize this when n and d are
large? memory? parallelization?

Can we obtain linear time algorithms?

S. M. Kakade (UW) Optimization for Big data 2 / 34



Part 1: Least Squares

min
w

n∑
i=1

(w · xi − yi)
2 + λ‖w‖2

How much computation time is required to to get ε accuracy?

n points, d dimensions.
“Big Data Regime”: How do you optimize this when n and d are
large?

Aside: think of x as a large feature representation.

S. M. Kakade (UW) Optimization for Big data 4 / 34



Review: Direct Solution

min
w

n∑
i=1

(w · xi − yi)
2 + λ‖w‖2

solution:
w = (X>X + λI)−1X>Y

where X be the n × d matrix whose rows are xi , and Y is an n-dim
vector.
time complexity: O(nd2) and memory O(d2)

Not feasible due to both time and memory.

S. M. Kakade (UW) Optimization for Big data 5 / 34



Review: Gradient Descent (and Conjugate GD)

min
w

n∑
i=1

(w · xi − yi)
2 + λ‖w‖2

n points, d dimensions,
λmax, λmin are eigs. of “design/data matrix”
Computation time to get ε accuracy:

Gradient Descent (GD):
λmax

λmin
nd log 1/ε

Conjugate Gradient Descent:√
λmax

λmin
nd log 1/ε

memory: O(d)

Better runtime and memory, but still costly.

S. M. Kakade (UW) Optimization for Big data 6 / 34


