
Parallelization in the “Big Data” Regime:
Model Parallelization?

Sham M. Kakade

Machine Learning for Big Data
CSE547/STAT548

University of Washington

S. M. Kakade (UW) Optimization for Big data 1 / 12

Announcements...

HW 3 due Mon (NIPS extension)
Projects: the term is approaching the end....

Today:
Review: mini-batching
Overview:
1 Averaging
2 Hogwild/asynchrony
3 Model parallelization/coordinate ascent
4 Deep learning

S. M. Kakade (UW) Optimization for Big data 2 / 12

Review: One machine or a cluster?

One machine:
GPUs!!!
matrix multiplications, convolutions, Fourier transforms,
Shared memory/communication is fast!

Cluster:
Try to (truly) breakup computations to be done.
Drawbacks: Communication is costly!
Simple method: run multiple jobs (or models) with different parameters.

S. M. Kakade (UW) Optimization for Big data 3 / 12

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Review: Data Parallelization vs. Model parallelization

Data parallelization:
Breakup data into smaller chunks to process.

Mini-batching, batch gradient descent
Averaging

Model parallelization:
Breakup up your model.

Try to update parts of model in a distributed manner.
Coordinate ascent methods
Update layers of a neural net on different machines.

Other issues:
Asynchrony

S. M. Kakade (UW) Optimization for Big data 4 / 12

Kira Goldner

Kira Goldner

Kira Goldner

Review: Mini-batching and the “critical” batch size b

Let b̃ be the critical b in which η∗b is η∗∞/2.

Informal Theorem: (square loss case) Up until b̃, you will linear
improvements in you serial complexity (with minor changes in the
total work). (Asymptotically, you can mini-batch to any extent.)
Does this hold more generally?
Theorem: Suppose ‖x‖2 ≤ L (almost surely) and λmax is the
maximal eigenvalue of E[xx>]. Then:∑

i λi

λmax
=

E[‖x‖2]

λmax
≤ b̃ ≤ L

λmax

(for not very kurtotic distributions, L ≈ E[‖x‖2).

S. M. Kakade (UW) Optimization for Big data 5 / 12

Topic 1: Averaging & Data-Parallelization

With “mini-batching”, our presentation suggests you might as well
just use a single machine with mini-batching.
What can we do with multiple machines?
In the convex case:

Breakup your data onto M machines
(Must still have “enough” data on each machine.)

D = D1 ∪ D2 ∪ . . . ∪ DM

Run (mini-batch) SGD separately on each machine separately.
Communicate each machines answer to a central “parameter server”,
and (by convexity) average the final answer from each machine.
Then repeat.

S. M. Kakade (UW) Optimization for Big data 6 / 12

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Averaging: How good is it?

Question: What if there isn’t enough data on each machine?
How much data do we need on each machine?
Roughly, we need κ data points per machine.
Theorem: With “enough” data on each machine, then one can just
run one pass of SGD separately on each machine and then average
their answers. This will be optimal statistically (e.g. in terms of
generalization).

S. M. Kakade (UW) Optimization for Big data 7 / 12

Kira Goldner

Kira Goldner

Kira Goldner

Topic 2: Hogwild and Asynchronous Updating

mini-batch SGD: using batch size b:

wt+1 ← wt − ηb

1
b

b∑
j=1

∇̂`j(wt)

where ηb is our learning rate.
Suppose we parallelize this on b machines:

Each machine computes ηb
b ∇̂`j (wt).

They read wt from a “parameter server”.
They wait until wt is updated before reading again.

To compute wt+1, we need to do b additions of the form:

w ← w − ηb

b
∇̂`j (wt)

Each machine “locks” the parameter server when updating.

Problem: these are serial and “locks” can be slow.
S. M. Kakade (UW) Optimization for Big data 8 / 12

Hogwild and Asynchronous Updating

Hogwild:
Ignore the locks.
Each machine reads the current “w” when it wants.
Each machine updates on the parameter server, ignoring the locks.

Informal Theorem: Suppose the updates, ηb
b ∇̂`j(wt), computed by

each machine are sparse (sufficiently sparse and without much
conflicts). Then some guarantees on accuracy.
Does it work more generally?

S. M. Kakade (UW) Optimization for Big data 9 / 12

Kira Goldner

Topic 3: Model Parallelization

Try to update model parameters simultaneously, on different
machines.
Recall coordinate ascent on a loss function L(w):

start with some w .
choose coordinate i randomly, and update:

∆i = argmin∆F (w1, . . .wi−1,wi + ∆, . . . ,wd)

wi ← wi + ∆i

the complexity depends on the argmin.
return w

Idea: What if we try to update many coordinate in parallel?

S. M. Kakade (UW) Optimization for Big data 10 / 12

Kira Goldner

Example: L1/Shotgun

For the Lasso, the argmin can be done efficiently.
Compute the ∆i ’s for b coordinates in parallel.
How do we update each wi?
We must use some stepsize η

wi ← wi + η∆i

(where η ≥ 1/b).
Much like “mini-batching”, this is helpful (up to a point).

S. M. Kakade (UW) Optimization for Big data 11 / 12

Kira Goldner

Model Parallelization (in the dual)

instead of optimizing L(w1, . . .wd), let’s optimize the dual function
G(α1, . . . αi−1, z, . . . , αn).
now coordinates αi are associated with datapoints xi .
So model parallelization/coordinate ascent is essentially data
parallelization.
We are updating parameters associated with datapoints.
How much does this help?
Again, much like mini-batching.
Practice?

S. M. Kakade (UW) Optimization for Big data 12 / 12

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

