Optimization in the "Big Data" Regime 2: SVRG & Tradeoffs in Large Scale Learning.

Sham M. Kakade

Machine Learning for Big Data CSE547/STAT548

University of Washington

Announcements...

- Work on your project milestones
 - read/related work summary
 - some empirical work

Today:

- Review: optimization of finite sums, (dual) coordinate ascent
- New: SVRG (for sums of loss functions);
 Tradeoffs in large scale learning
 How do we optimize in the "big data" regime?

Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n training examples.

- have *n* training examples $(x_1, y_1), \dots (x_n, y_n)$
- have parametric a classifier h(x, w), where w is a d dimensional vector.

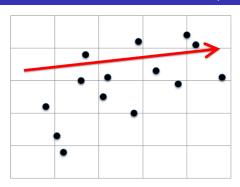
$$\min_{w} L(w)$$
 where $L(w) = \sum_{i} loss(h(x_i, w), y_i)$

• "Big Data Regime": How do you optimize this when n and d are large? memory? parallelization?

Can we obtain linear time algorithms to find an ϵ -accurate solution? i.e. find \hat{w} so that

$$L(\hat{w}) - \min_{w} L(w) \le \epsilon$$

Review: Stochastic Gradient Descent (SGD)

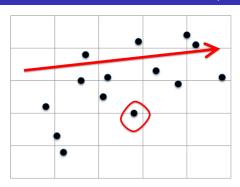


SGD update rule: at each time t,

sample a point
$$(x_i, y_i)$$

 $w \leftarrow w - \eta(w \cdot x_i - y_i)x_i$

Review: Stochastic Gradient Descent (SGD)

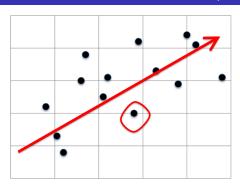


SGD update rule: at each time t,

sample a point
$$(x_i, y_i)$$

 $w \leftarrow w - \eta(w \cdot x_i - y_i)x_i$

Review: Stochastic Gradient Descent (SGD)



• SGD update rule: at each time t,

sample a point
$$(x_i, y_i)$$

 $\mathbf{w} \leftarrow \mathbf{w} - \eta(\mathbf{w} \cdot \mathbf{x}_i - \mathbf{y}_i) \mathbf{x}_i$

• Problem: even if $w=w_*$, the update changes w. Rate: convergence rate is $O(1/\epsilon)$, with decaying η simple algorithm, light on memory, but poor convergence rate

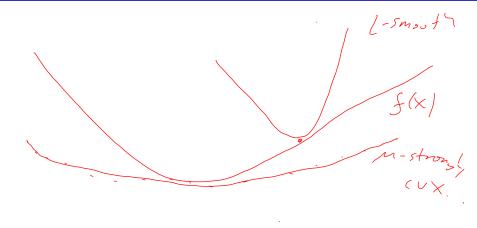
SDCA advantages/disadvantages

What about more general convex problems? e.g.

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i} loss(h(x_i, w), y_i)$$

- the basic idea (formalized with duality) is pretty general for convex loss(·).
- works very well in practice.
- memory: SDCA needs O(n+d) memory, while SGD is only O(d).
- What about an algorithm for non-convex problems?
 - SDCA seems heavily tied to the convex case.
 - Is there an algo that is highly accurate in the convex case and sensible in the non-convex case?

L smooth and μ -strongly convex case



Review: Stochastic Gradient Descent

- Suppose L(w) is μ strongly convex.
- Suppose each loss loss(·) is *L*-smooth
- To get ϵ accuracy:
 - # iterations to get ϵ -accuracy:

$$\frac{L}{\mu\epsilon}$$

(see related work for precise problem dependent parameters)

• Computation time to get ϵ -accuracy:

$$\frac{L}{\mu\epsilon}c$$

(assuming O(d) cost pre gradient evaluation.)

(another idea) Stochastic Variance Reduced Gradient (SVRG)

• exact gradient computation: at stage s, using \widetilde{w}_s , compute:

$$\nabla L(\widetilde{w}_s) = \frac{1}{n} \sum_{i=1}^n \nabla \operatorname{loss}(h(x_i, \widetilde{w}_s), y_i)$$

2 variance reduction + SGD: initialize $w \leftarrow \widetilde{w}_s$. for m steps,

sample a point
$$(x, y)$$

$$w \leftarrow w - \eta \left(\nabla \operatorname{loss}(h(x, w), y) - \nabla \operatorname{loss}(h(x, \widetilde{w}_s), y) + \nabla L(\widetilde{w}_s) \right)$$

3 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$.

Properties of SVRG

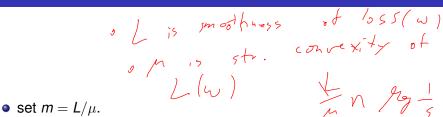
unbiased updates: What is the mean of the blue term?

$$\mathbb{E}[\nabla \operatorname{loss}(h(x, \widetilde{w}_s), y) - \nabla L(\widetilde{w}_s)] = ?$$

where the expectation is for a random sample (x, y).

- If $\widetilde{w} = w_*$, then no update.
- Memory is O(d).
- No "dual" variables.
 Applicable to non-convex optimization.

Guarantees of SVRG



• # of gradient computations to get ϵ accuracy:

$$\left(n + \frac{L}{\mu}\right) \log 1/\epsilon$$

Comparisons

- a gradient evaluation is at point (x, y).
 - SVRG: # of gradient computations to get ϵ accuracy:

$$\left(n + \frac{L}{\mu}\right) \log 1/\epsilon$$

• # of gradient evaluations for batch gradient descent:

$$n\frac{\tilde{L}}{\mu}\log 1/\epsilon$$

where \tilde{L} is the smoothness of L(w).

of gradient computations for SGD:

$$\frac{L}{\mu\epsilon}$$

Non-convex comparisons

• How many gradient evaluations does it take to find w so that:

$$\|\nabla L(w)\|^2 \le \epsilon^2$$

(i.e. "close" to a stationary point)

- Rates: the number of gradient evaluations, at a point (x, y), is:
 - GD: O(n/ε)
 - SGD: $O(1/\epsilon^2)$
 - SVRG: $O(n + n^{2/3}/\epsilon)$

Does SVRG work well in practice?

Tradeoffs in Large Scale Learning.

- Many issues sources of "error"
- approximation error: our choice of a hypothesis class
- estimation error: we only have *n* samples
- optimization error: computing exact (or near-exact) minimizers can be costly.
- How do we think about these issues?

The true objective

- hypothesis map $x \in \mathcal{X}$ to $y \in \mathcal{Y}$.
- have *n* training examples $(x_1, y_1), \dots (x_n, y_n)$ sampled i.i.d. from \mathcal{D} .
- Training objective: have a set of parametric predictors $\{h(x, w) : w \in \mathcal{W}\},\$

$$\min_{w \in \mathcal{W}} \hat{L}_n(w) \text{ where } \hat{L}_n(w) = \frac{1}{n} \sum_{i=1}^n \operatorname{loss}(h(x_i, w), y_i)$$

• True objective: to generalize to \mathcal{D} ,

$$\min_{w \in \mathcal{W}} L(w)$$
 where $L(w) = \mathbb{E}_{(X,Y) \sim \mathcal{D}} loss(h(X,w), Y)$

Optimization: Can we obtain linear time algorithms to find an ϵ -accurate solution? i.e. find \hat{h} so that

$$L(\hat{w}) - \min_{w \in \mathcal{W}} L(w) \le \epsilon$$

Definitions

• Let h^* is the *Bayes optimal hypothesis*, over all functions from $\mathcal{X} \to \mathcal{Y}$.

$$h^* \in \operatorname{argmin}_h L(h)$$

• Let w* is the best in class hypothesis

$$w^* \in \operatorname{argmin}_{w \in \mathcal{W}} L(w)$$

• Let w_n be the *empirical risk minimizer:*

$$w_n \in \operatorname{argmin}_{w \in \mathcal{W}} \hat{L}_n(w)$$

• Let \tilde{w}_n be what our algorithm returns.

Loss decomposition

Observe:

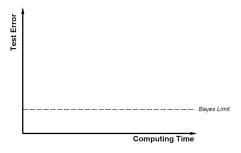
$$L(\tilde{w}_n) - L(h^*) = L(w^*) - L(h^*)$$
 Approximation error $+ L(w_n) - L(w^*)$ Estimation error $+ L(\tilde{w}_n) - L(w_n)$ Optimization error

- Three parts which determine our performance.
- Optimization algorithms with "best" accuracy dependencies on \hat{L}_n may not be best.

Forcing one error to decrease much faster may be wasteful.

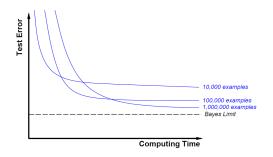
Time to a fixed accuracy

test error versus training time



Comparing sample sizes

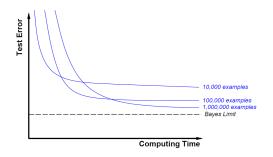
test error versus training time



• Vary the number of examples

Comparing sample sizes and models

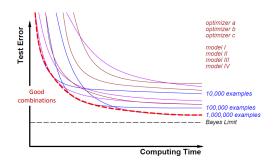
test error versus training time



• Vary the number of examples

Optimal choices

test error versus training time



• Optimal combination depends on training time budget.

Estimation error: simplest case

Measuring a mean:

$$L(\mu) = \mathbb{E}(\mu - y)^2$$

The minima is at $\mu = \mathbb{E}[y]$.

- With *n* samples, the Bayes optimal estimator is the sample mean: $\hat{\mu}_n = \frac{1}{n} \sum_i y_i$.
- The error is:

$$\mathbb{E}[L(\hat{\mu}_n)] - L(\mathbb{E}[y]) = \frac{\sigma^2}{n}$$

 σ^2 is the variance and the expectation is with respect to the n samples.

• How many samples do we need for ϵ error?

Let's compare:

- SGD: Is $O(1/\epsilon)$ reasonable?
- GD: Is log 1/eps needed?
- SDCA/SVRG: These are also log 1/eps but much faster.

Statistical Optimality

- Can generalize as well as the sample minimizer, w_n?
 (without computing it exactly)
- For a wide class of models (linear regression, logistic regression, etc), we have that the estimation error is:

$$\mathbb{E}[L(w_n)] - L(w^*) = \frac{\sigma_{\text{opt}}^2}{n}$$

where σ_{opt}^2 is a problem dependent constant.

 What is the computational cost of achieving exactly this rate? say for large n?

Averaged SGD

SGD:

$$w_{t+1} \leftarrow w_t - \eta_t \nabla \operatorname{loss}(h(x, w_t), y)$$

- An (asymptotically) optimal algo:
 - Have η_t go to 0 (sufficiently slowly)
 - (iterate averaging) Maintain the a running average:

$$\overline{w_n} = \frac{1}{n} \sum_{t \le n} w_t$$

 (Polyak & Juditsky, 1992) for large enough n and with one pass of SGD over the dataset:

$$\mathbb{E}[L(\overline{w_n})] - L(w^*) \stackrel{n \to \infty}{=} \frac{\sigma_{\text{opt}}^2}{n}$$

Acknowledgements

Some slides from "Large-scale machine learning revisited", Leon Bottou 2013.