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Announcements...

Work on your project milestones
read/related work summary
some empirical work

Today:
Review: optimization of finite sums, (dual) coordinate ascent
New: SVRG (for sums of loss functions);
Tradeoffs in large scale learning
How do we optimize in the “big data” regime?
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Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n
training examples.

have n training examples (x1, y1), . . . (xn, yn)

have parametric a classifier h(x ,w), where w is a d dimensional
vector.

min
w

L(w) where L(w) =
∑

i

loss(h(xi ,w), yi)

“Big Data Regime”: How do you optimize this when n and d are
large? memory? parallelization?

Can we obtain linear time algorithms to find an ε-accurate solution?
i.e. find ŵ so that

L(ŵ)−min
w

L(w) ≤ ε
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Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate
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SDCA advantages/disadvantages

What about more general convex problems? e.g.

min
w

L(w) where L(w) =
∑

i

loss(h(xi ,w), yi)

the basic idea (formalized with duality) is pretty general for convex loss(·).
works very well in practice.

memory: SDCA needs O(n + d) memory, while SGD is only O(d).
What about an algorithm for non-convex problems?

SDCA seems heavily tied to the convex case.
Is there an algo that is highly accurate in the convex case and sensible
in the non-convex case?
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L smooth and µ-strongly convex case
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Review: Stochastic Gradient Descent

Suppose L(w) is µ strongly convex.
Suppose each loss loss(·) is L-smooth
To get ε accuracy:

# iterations to get ε-accuracy:
L
µε

(see related work for precise problem dependent parameters)
Computation time to get ε-accuracy:

L
µε

d

(assuming O(d) cost pre gradient evaluation.)
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(another idea) Stochastic Variance Reduced Gradient
(SVRG)

1 exact gradient computation: at stage s, using w̃s, compute:

∇L(w̃s) =
1
n

n∑
i=1

∇loss(h(xi , w̃s), yi)

2 variance reduction + SGD: initialize w ← w̃s. for m steps,

sample a point (x , y)
w ← w − η

(
∇loss(h(x ,w), y)−∇loss(h(x , w̃s), y) +∇L(w̃s)

)
3 update and repeat: w̃s+1 ← w .
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Properties of SVRG

unbiased updates: What is the mean of the blue term?

E[∇loss(h(x , w̃s), y)−∇L(w̃s)] =?

where the expectation is for a random sample (x , y).
If w̃ = w∗, then no update.
Memory is O(d).
No “dual” variables.
Applicable to non-convex optimization.
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Guarantees of SVRG

set m = L/µ.
# of gradient computations to get ε accuracy:(

n +
L
µ

)
log 1/ε

S. M. Kakade (UW) Optimization for Big data 10 / 25



Comparisons

a gradient evaluation is at point (x , y).

SVRG: # of gradient computations to get ε accuracy:(
n +

L
µ

)
log 1/ε

# of gradient evaluations for batch gradient descent:

n
L̃
µ

log 1/ε

where L̃ is the smoothness of L(w).
# of gradient computations for SGD:

L
µε
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Non-convex comparisons

How many gradient evaluations does it take to find w so that:

‖∇L(w)‖2 ≤ ε2

(i.e. ”close” to a stationary point)
Rates: the number of gradient evaluations, at a point (x , y), is:

GD: O(n/ε)
SGD: O(1/ε2)
SVRG: O(n + n2/3/ε)

Does SVRG work well in practice?
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Tradeoffs in Large Scale Learning.

Many issues sources of “error”
approximation error: our choice of a hypothesis class
estimation error: we only have n samples
optimization error: computing exact (or near-exact) minimizers can
be costly.
How do we think about these issues?
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The true objective

hypothesis map x ∈ X to y ∈ Y.
have n training examples (x1, y1), . . . (xn, yn) sampled i.i.d. from D.
Training objective: have a set of parametric predictors
{h(x ,w) : w ∈ W},

min
w∈W

L̂n(w) where L̂n(w) =
1
n

n∑
i=1

loss(h(xi ,w), yi)

True objective: to generalize to D,

min
w∈W

L(w) where L(w) = E(X ,Y )∼Dloss(h(X ,w),Y )

Optimization: Can we obtain linear time algorithms to find an
ε-accurate solution? i.e. find ĥ so that

L(ŵ)− min
w∈W

L(w) ≤ ε
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Definitions

Let h∗ is the Bayes optimal hypothesis, over all functions from
X → Y.

h∗ ∈ argminhL(h)

Let w∗ is the best in class hypothesis

w∗ ∈ argminw∈WL(w)

Let wn be the empirical risk minimizer:

wn ∈ argminw∈W L̂n(w)

Let w̃n be what our algorithm returns.
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Loss decomposition

Observe:

L(w̃n)− L(h∗) = L(w∗)− L(h∗) Approximation error

+L(wn)− L(w∗) Estimation error

+L(w̃n)− L(wn) Optimization error

Three parts which determine our performance.
Optimization algorithms with “best” accuracy dependencies on L̂n
may not be best.
Forcing one error to decrease much faster may be wasteful.

S. M. Kakade (UW) Optimization for Big data 16 / 25



Time to a fixed accuracy

test error versus training time
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Comparing sample sizes

test error versus training time

• Vary the number of examples
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Comparing sample sizes and models

test error versus training time

• Vary the number of examples
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Optimal choices

test error versus training time

• Optimal combination depends on training time budget.

Good 
combinations
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Estimation error: simplest case

Measuring a mean:
L(µ) = E(µ− y)2

The minima is at µ = E[y ].
With n samples, the Bayes optimal estimator is the sample mean:
µ̂n = 1

n
∑

i yi .
The error is:

E[L(µ̂n)]− L(E[y ]) =
σ2

n

σ2 is the variance and the expectation is with respect to the n
samples.
How many samples do we need for ε error?
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Let’s compare:

SGD: Is O(1/ε) reasonable?
GD: Is log 1/eps needed?
SDCA/SVRG: These are also log 1/eps but much faster.
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Statistical Optimality

Can generalize as well as the sample minimizer, wn?
(without computing it exactly)
For a wide class of models (linear regression, logistic regression,
etc), we have that the estimation error is:

E[L(wn)]− L(w∗) =
σ2

opt

n

where σ2
opt is a problem dependent constant.

What is the computational cost of achieving exactly this rate? say for
large n?
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Averaged SGD

SGD:
wt+1 ← wt − ηt∇loss(h(x ,wt), y)

An (asymptotically) optimal algo:
Have ηt go to 0 (sufficiently slowly)
(iterate averaging) Maintain the a running average:

wn =
1
n

∑
t≤n

wt

(Polyak & Juditsky, 1992) for large enough n and with one pass of SGD
over the dataset:

E[L(wn)]− L(w∗) n→∞
=

σ2
opt

n
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