Case Study 2: Document Retrieval

Parillelization
in ML.

Clustering Documents

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 20, 2017

©Sham Kakade 2017

Announcements:

- HW2 posted
- Project Milestones
- Shameless plug for my talk
 - Talk: Accelerating Stochastic Gradient Descent
 - Next Tue at 1:30 in CSE 303
 - It's a very promising directions....
- Today:
 - Review: locality sensitive hashing
 - Today: clustering and map-reduce

paralle l'Zation

©Kaka@e 2017

Case Study 2: Document Retrieval

Locality-Sensitive Hashing Random Projections for NN Search

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017

©Sham Kakade 2017

Intuition (?): NN in 1D and Sorting

How do we do 1-NN searches in 1 dim?

Pre-processing time:

Query time:

O(MyN)

OSham Kakade 2017

Using Hashing to Find Neighbors

- KD-trees are cool, but...
 - Non-trivial to implement efficiently
 - Problems with high-dimensional data
- Approximate neighbor finding...
 - Don't find exact neighbor, but that's OK for many apps, especially with Big Data
- What if we could use hash functions:
 - Hash elements into buckets.

Want Sinila In same bucket as x:

find the hish (good-1 10 in

But, by design...

©Sham Kakade 2017

What to hash?

- Before: we were hashing 'words'/strings
- Remember, we can think of hash functions abstractly:

h: X -> { 1, -- m }

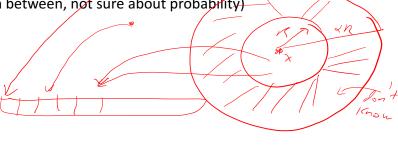
 Idea of LSH: try to has similar items into same buckets and different items into different buckets

©Sham Kakade 2017

6

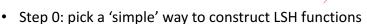
Locality Sensitive Hashing (LSH)

- Suppose we have a set of functions H and a distribution over these functions.
- A LSH family H satisfies (for example), for some similarity function *d*, for r>0, $\alpha>1$, 1>P1,P2>0:
 - $-d(x,x') \le r$, then $Pr_H(h(x)=h(x'))$ is high, with prob>P1
 - $-d(x,x') > \alpha.r$, then $Pr_H(h(x)=h(x'))$ is low, with probl<P2
 - (in between, not sure about probability)



©Sham Kakade 2017

LSH: basic paradigm



• Step 1: (amplification) make another hash function by

repeating this construction $\phi (x) = (h, (x), \dots, h_{K}(x))$

bucket.

• Step 3: use multiple hash tables. for recall, search for similar items in the same buckets. have 6 4764 + 5/05

Example: hashing binary strings

- Suppose x and x' are binary strings
- Hamming distance metric |x-x'|
- What is a simple family of hash function? $\bigvee_{i=1}^{n-1} (x_i) = x_i$

$$h^{(i)}(x) = x$$

• Suppose |x-x'| are R close, what is P1?

• Suppose |x-x'|> k, what is P2?

©Sham Kakade 2017

Amplification ench of

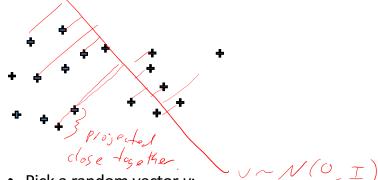
- Improving P1 and P2

• Now the hash function is:
$$\phi = \left(h_{1}(X) h_{2}(X) \dots h_{K}(X) \right)$$

$$\frac{1}{2} \left(h_{1}(X) \dots h_{K}(X) \dots h_{K}(X) \right)$$

The choice p is a parameter.

Review: Random Projection Illustration



- Pick a random vector v:
 - Independent Gaussian coordinates

$$y(x) = v \cdot x$$

- Preserves separability for most vectors
 - Gets better with more random vectors

©Sham Kakade 2017

11

Multiple Random Projections: **Approximating Dot Products**

- Pick m random vectors v(i):
 - Independent Gaussian coordinates

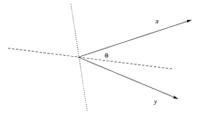
- Approximate dot products:
 - Cheaper, e.g., learn in smaller *m* dimensional space

eaper, e.g., learn in smaller *m* dimensional space
$$\emptyset (x) = (V, x) \cdot V, x$$
and logarithmic number of dimensional

- Only need logarithmic number of dimensions!
 - N data points, approximate dot-product within ε >0:

But all sparsity is lost

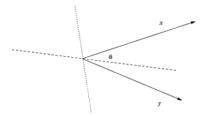
LSH Example function: Sparser Random **Projection for Dot Products**



- Pick random vector v
- Simple 0/1 projection: $h(x) = S_y (\overrightarrow{V}, \overrightarrow{X})$
- Now, each vector is approximated by a single bit
 (×) = (√, (×))
 This is an LSH function, though with poor α and P2

©Sham Kakade 2017

LSH Example continued: Amplification with multiple projections



- Pick random vectors $v^{(i)}$
- Simple 0/1 projection: $\phi_i(x) =$
- Now, each vector is approximated by a bit-vector
- Dot-product approximation:

LSH for Approximate Neighbor Finding

Very similar elements fall in exactly same bin: $\psi(x) = \psi(x)$

- And, nearby bins are also nearby:
- Simple neighbor finding with LSH:
 - For bins b of increasing hamming distance to $\phi(x)$:
 - Look for neighbors of x in bin b
 - Stop when run out of time
- Pick m such that N/2" is "smallish" + use multiple tables

©Sham Kakade 2017

15

LSH: using multiple tables ©Sham Kakade 2017

v	Query time	Space used	Preprocessing time
Vornoi	$O(2^d \log n)$	$O(n^{d/2})$	$O(n^{d/2})$
Kd-tree	$O(2^d \log n)$	O(n)	$O(n \log n)$
LSH	$O(n^{\rho} \log n)$	$O(n^{1+\rho})$	$O(n^{1+\rho}\log n)$
(overTree	Oladyn)	Okan)	0/29 4 29 1

Hash Kernels: Even Sparser LSH for Learning

- Two big problems with random projections:
 - Data is sparse, but random projection can be a lot less sparse
 - You have to sample m huge random projection vectors
 - And, we still have the problem with new dimensions, e.g., new words
- Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections
- Pick 2 hash functions:
 - h: Just like in Count-Min hashing
 - $-\xi$: Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)
- Define a "kernel", a projection ϕ for x:

©Sham Kakade 2017

18

Hash Kernels, Random Projections and Sparsity

$$\phi_i(\mathbf{x}) = \sum_{j:h(j)=i} \xi(j)\mathbf{x}_j$$

- Hash Kernel as a random projection:
- What is the random projection vector for coordinate i of ϕ_i :
- Implicitly define projection by h and ξ , so no need to compute apriori and automatically deals with new dimensions
- Sparsity of ϕ , if x has s non-zero coordinates:

©Sham Kakade 2017

19

What you need to know

- Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
- LSH uses random projections
 - Only $O(\log N/\epsilon^2)$ vectors needed
 - But vectors and results are not sparse
- Use LSH for nearest neighbors by mapping elements into bins
 - Bin index is defined by bit vector from LSH
 - Find nearest neighbors by going through bins
- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash functions
 - Can even use one hash function, and take least significant bit to define $\boldsymbol{\xi}$
 - Quickly generate projection $\phi(x)$
 - Learn in projected space

©Sham Kakade 2017

20