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Announcements: [
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HW?2 posted e b2
Project Milestones

* Shameless plug for my talk ™
— Talk: Accelerating Stochastic Gradient Descent/
— Next Tue at 1:30 in CSE 303
— It’s a very promising directions.... /

— Review: | ity sensitive has P //{ /ZR{Z}%

— Today: clustering and map-reduce *
o -
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Intuition (?): NN i and Sorting
How do we do 1-NN searches in 1 dim?

O P gﬁ//L ,7
Pre-processing time: Som 4.
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Query time:

O (1) O S )
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Approximate neighbor finding...

Using Hashing to Find Neighbors

KD-trees are cool, but... « 4
— Non-trivial to implem iciently_ ( S
— Problems with high-dimensional data > — Vé/fc\/._ o /

on’t find exact neighbor, but t
Big Data

What if we could use hash
— Hash elements into buckéts:

’'s OK for many apps espeC|aIIy with
I = _of__f(—a‘z\w

(g )

/ } l L1 !
Wt f Je, 7 A1/ f/t’éb

— Look for nelghbors that faII |n€ame bucket as x:
S e <

/F]%f// 146 5754 (gua// /0(_“7)) bvoég%

But, by design... e (Geclc T Ll
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What to hash?

Before: we were hashing ‘words’/strings

Remember, we can think of hash functions abstractly:

RIS R AL

et Ly lees
Idea of LSH: try to has similar items into same buckets

and different items into different buckets
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Locality Sensitive Hashing (LSH)

* Suppose we have a set of functions H and a distribution over
these functions.

* A LSH family H satisfies (for example), for some similarity
function d, for r>0, a>1, 1>P1,P2>0:

— d(x,x") £ r, then Pry(h(x)= ) is high, with prob>P1
— d(x,x’) > a.r, then Prg(h(x)=h(x’)) is low, with probl<P2
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LSH: basic pa radlgm
N~ 2
* Step 0: pick a ‘simple’ way to construct LSH functions

* Step 1: (amplification) make another hash function by

repeatlng this constr CJCtlon
(2 = : (x) \

* Step 2 the output of this functlonfx speC|f|es the index to a
bucket.
/\
ey 17

* Step 3: use multiple hash tables. f?r recall, search for similar
items in the same buckets. CP : ¢ (¢
L ocse é Lm;@ S /e S,
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Example: hashing blnary strings
£0,137
* Suppose x and x’ are binary strings
* Hamming distance metric |x-x"| ,
* Whatisa SLgane famlly of hash function?

}/\U \( :
* Suppose |x-x’| are R close, what is P1?
ST et

1<
* Suppose |x-x’|>°é£, what is P2?

Pl: [~ 7%
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Amplification ¢ ¢ ¢

grer s o/ Af
boa
* Improving P1 and P2 o 5 Z

* Now tl'\me hash functlon is:

gA: {L ) hoba) %(,;'&W

: , )
N O A L))

<
* The choice m is a parameter.
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Review: Random Projection lllustration

Clege Joﬁe e
‘ O
* Pick a random vector v: v A0 T )

— Independent Gaussian coordinates
9 (~) = v <
* Preserves separability for most vectors
— Gets better with more random vectors
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Multiple Random Projections:
Approximating Dot Progucts

Pick m random vectors v(i): . + * :
— Independent Gaussian coordinates * ® -

Vot U, V{/’«///O/—L_> . + .t

* Approximate dot products: T
— Cheaper, e.g., learn in smaller m dimensional space [(\/ . />
pox)= (Vi X)) F SR

Only need logarithmic number of dimensions!

—_ >< o\ ~
— N data points, approximate dot-product within £>0:
| e o7
_ 0 log N
m=0\"g - Jaexl- g0

* But all sparsity is lost
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LSH Example function: Sparser Random
Projection for Dot Products

_ _
* Pick random vector v S
* Simple 0/1 projection: h(x) = S; - V. .><>
* Now, each vector is approximated by a single bit >
@[(X\: ( 1&3( B IAK (X)
This-isantSHferetien—though with neara-—and-P
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LSH Example continued: Amplification with
multiple projections

¢ Pick random vectors vi!
* Simple 0/1 projection: ¢;(x) =

* Now, each vector is approximated by a bit-vector

* Dot-product approximation:
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LSH for Approximate Neighbor Finding

. Verygn(n:/larﬁelnépe(nts faVII(ir? exacgy s??c)a I?in:

* And, nearby bins are also nearby

¢ Simple neighbor finding with LSH:

— For bins b of increasing hamming distance to ¢(x):
* Look for neighbors of x in bin b

— Stop when run out of time
/<
* Pick m such that N/27 is “smallish” + use multiple tables
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LSH using multiple tables

( <>(\ [\c[%)
cg/ [ N ]
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dL Kl ) / / W
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H ’J\\l_ .. . us e )J) p
-~ NN complexities oo
Query time |Space Preprocessing

used time

Vornoi 0(2d logn) O(ndlz) O(ndlz)

Kd-tree O(Zd log n) O(n) O(nlogn)

LSH O(np log n) O(n“p) O(n“p log n)

(ov<r oo ol 2% e ) ()&14 ) 0R " w Aom )

« -~ < ~
5 TR So ¢ r d(,/*’\ .
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Hash Kernels: Even Sparser LSH
for Learning

Two big problems with random projections:
— Data is sparse, but random projection can be a lot less sparse

— You have to sample m huge random projection vectors
* And, we still have the problem with new dimensions, e.g., new words

Hash Kernels: Very simple, but powerful idea: combine sketching for
learning with random projections

Pick 2 hash functions:
— h: Just like in Count-Min hashing

— & Sign hash function
* Removes the bias found in Count-Min hashing (see homework)

Define a “kernel”, a projection ¢ for x:
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Hash Kernels, Random Projections
and Sparsity

pi(x) = D EG)x
J:h(j)=i
Hash Kernel as a random projection:

What is the random projection vector for coordinate i of ¢:

Implicitly define projection by h and &, so no need to compute apriori and
automatically deals with new dimensions

Sparsity of ¢, if x has s non-zero coordinates:
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What you need to know

Locality-Sensitive Hashing (LSH): nearby points hash to the same or
nearby bins

LSH uses random projections

— Only O(log N/€?) vectors needed

— But vectors and results are not sparse

Use LSH for nearest neighbors by mapping elements into bins

— Binindex is defined by bit vector from LSH

— Find nearest neighbors by going through bins

Hash kernels:

— Sparse representation for feature vectors

Very simple, use two hash functions
* Can even use one hash function, and take least significant bit to define §

Quickly generate projection ¢(x)
Learn in projected space
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