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Task Description: 
Finding Similar Items

Case Study 2: Document Retrieval
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Announcements:

• HW2 posted

• Project Milestones
– Start early

– Lit. review (>= 3 papers read carefully)

– First rounds of experiments

• Today: 
– Review: Sim search, k-NNs, KD-trees

– Today: KD-trees (cont.), ball trees, cover trees

©Kakade 2017
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Task 1: Find Similar Documents
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 To begin…

 Input: Query article 

 Output: Set of k similar articles

Document Representation
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 Bag of words model
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Image Search…
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Where is FAST similarity search important?
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1-Nearest Neighbor
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 Articles

 Query: 

 1-NN
 Goal: 

 Formulation:

 Naïve approach: 
Brute force search
 Given a query point

 Scan through each point

 O(N) distance computations per 
1-NN query!

 O(Nlogk) per k-NN query!

 What if N is huge???
(and many queries)

Issues with Search Techniques

©Sham Kakade 2017 8

33 Distance Computations
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 How big is N? 

 How fast do we desire to do recall? 

Think about Web Search/Image Search
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Intuition (?): NN in 1D and Sorting
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 How do we do 1-NN searches in 1 dim? 

 Pre-processing time:

 Query time: 
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 Smarter approach: kd-trees
 Structured organization of documents

 Recursively partitions points into axis 
aligned boxes.

 Enables more efficient pruning of 
search space

 Examine nearby points first.

 Ignore any points that are further 
than the nearest point found so far.

 kd-trees work “well” in “low-
medium” dimensions
 We’ll get back to this…

KD-Trees
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KD-Tree Construction
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Pt X Y

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …

 Start with a list of d-dimensional points.
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KD-Tree Construction
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Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

 Split the points into 2 groups by:
 Choosing dimension dj and value V (methods to be discussed…)

 Separating the points into > V and  <= V.

KD-Tree Construction
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X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

 Consider each group separately and possibly split again (along 
same/different dimension).
 Stopping criterion to be discussed…

Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …
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KD-Tree Construction
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Pt X Y

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

Pt X Y

1 0.00 0.00

… … …

Y>.1

NO
YES

 Consider each group separately and possibly split again (along 
same/different dimension).
 Stopping criterion to be discussed…

KD-Tree Construction
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 Continue splitting points in each set 
 creates a binary tree structure

 Each leaf node contains a list of points



4/13/2017

9

KD-Tree Construction
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 Keep one additional piece of information at each node:
 The (tight) bounds of the points at or below this node.

KD-Tree Construction
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 Use heuristics to make splitting decisions:

 Which dimension do we split along? 

 Which value do we split at?  

 When do we stop?   
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Many heuristics…
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median heuristic center-of-range heuristic

Nearest Neighbor with KD Trees
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 Traverse the tree looking for the nearest neighbor of the query 
point.
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Nearest Neighbor with KD Trees
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 Examine nearby points first: 
 Explore branch of tree closest to the query point first.

Nearest Neighbor with KD Trees
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 Examine nearby points first: 
 Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD Trees
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 When we reach a leaf node: 
 Compute the distance to each point in the node.

Nearest Neighbor with KD Trees
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 When we reach a leaf node: 
 Compute the distance to each point in the node.
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Nearest Neighbor with KD Trees
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 Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees

©Sham Kakade 2017 26

 Each time a new closest node is found, update the distance 
bound
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Nearest Neighbor with KD Trees
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 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

Nearest Neighbor with KD Trees
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 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees
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 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

Complexity
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 For (nearly) balanced, binary trees...

 Construction
 Size:

 Depth: 

 Median + send points left right:

 Construction time: 

 1-NN query
 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Complexity range:

 Under some assumptions on distribution of points, we 
get O(logN) but exponential in d (see citations in reading)
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Complexity
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Complexity for N Queries

©Sham Kakade 2017 32

 Ask for nearest neighbor to each document

 Brute force 1-NN:

 kd-trees:
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Inspections vs. N and d

©Sham Kakade 2017 33

K-NN with KD Trees

©Sham Kakade 2017 34

 Exactly the same algorithm, but maintain distance as distance to 
furthest of current k nearest neighbors

 Complexity is:
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Approximate K-NN with KD Trees
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 Before: Prune when distance to bounding box > 

 Now: Prune when distance to bounding box >

 Will prune more than allowed, but can guarantee that if we return a neighbor at 
distance , then there is no neighbor closer than           .

 In practice this bound is loose…Can be closer to optimal.

 Saves lots of search time at little cost in quality of nearest neighbor.

What about NNs searches
in high dimensions?

©Sham Kakade 2017 36

 KD-trees:

 What is going wrong?

 Can this be easily fixed?

 What do have to utilize?

 utilize triangle inequality of metric

 New ideas: ball trees and cover trees
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Ball Trees
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Ball Tree Construction
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 Node:

 Every node defines a ball (hypersphere), containing 
 a subset of the the points (to be searched)

 A center

 A (tight) radius of the points

 Construction: 

 Root: start with a  ball which contains all the data

 take a ball and make two children (nodes) as follows:

 Make two spheres, assign each point (in the parent 
sphere) to its closer sphere

 Make the two spheres in a “reasonable” manner
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Ball Tree Search
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 Given point x, how do find its nearest neighbor quickly?

 Approach: 

 Start: follow a greedy path through the tree

 Backtrack and prune: rule out other paths based on the 
triange inequality
 (just like in KD-trees)

 How good is it?

 Guarantees:

 Practice:

Cover trees
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 What about exact NNs in general metric spaces?

 Same Idea: utilize triangle inequality of metric (so 
allow for arbitrary metric)

 What does the dimension even mean?

 cover-tree idea:
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Intrinsic Dimension
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 How does the volume grow, from radius R to 2R?

 Can we relax this idea to get at the “intrinsic” 
dimension?

 This is the “doubling” dimension:

Cover trees: data structure

©Sham Kakade 2017 42

 Ball Trees: each node had associated

 Center:

 (tight) Radius:

 Points:

 Cover trees:

 Center:

 (tight) Radius:

 Points:
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Cover Tree Complexity
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 Construction

 Size:

 Construction time: 

 1-NN query

 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Under assumptions that doubling dimension is D.

Wrapping Up – Important Points
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kd-trees

 Tons of variants
 On construction of trees (heuristics for splitting, stopping, representing branches…)

 Other representational data structures for fast NN search (e.g.,cover trees, ball 
trees,…)

Nearest Neighbor Search

 Distance metric and data representation are crucial to answer returned

For both…

 High dimensional spaces are hard!
 Number of kd-tree searches can be exponential in dimension

 Rule of thumb… N >> 2d… Typically useless.

 Distances are sensitive to irrelevant features 

 Most dimensions are just noise  Everything equidistant (i.e., everything is far away)

 Need technique to learn what features are important for your task
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What you need to know
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 Document retrieval task
 Document representation (bag of words)

 tf-idf

 Nearest neighbor search
 Formulation

 Different distance metrics and sensitivity to choice

 Challenges with large N

 kd-trees for nearest neighbor search
 Construction of tree

 NN search algorithm using tree

 Complexity of construction and query

 Challenges with large d


