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Case Study 2: Document Retrieval

Task Description:
Finding Similar ltems

Machine Learning for Big Data
CSE547/STAT548, University of Washington
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Announcements:

* HW2 posted
* Project Milestones
— Start early

— Lit. review (>= 3 papers read carefully)
— First rounds of experiments

* Today:
— Review: Sim search, k-NNs, KD-trees
— Today: KD-trees (cont.), ball trees, cover trees
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Task 1: Find Similar Documents

To begin...
O Input: Query article
[ Output: Set of k similar articles
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Document Representation
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Image Search...
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. Q bitter melon
Q @ bitter melon 4

Organic Authority
5 Bitter Melon Recipes: The Ancient
Healing Fruit

bitter melon stir fry

Z Visit page < Share

Related images VIEW ALL

Where is FAST similarity search important?
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1-Nearest Neighbor
Articles - ><f {X X 5
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Issues with Search Techniques

Naive approach:
Brute force search
O Given a query point XU ) o
0 Scan through each point QZZ BN %
0 O(N) distance computations per = °
1-NN query! o
O O(Nlogk) per k-NN query!

33 Distance Computations

What if N is huge???
(and many queries)
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Think about Web Search/Image Search
. s G Sy oges
How big is N? o 4
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How fast do we desire to do recall?

-
\

©Sham Kakade 2017 9

Intuition (?)

How do we do 1-NN searches in 1 dim?

O How o we §@/’L ?

V% Y o
Pre-processing time: s o A5
D O A Y G S . ~ W/%//)
Query time:
01 O ( fs 1)
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KD-Trees

Smarter approach: kd-trees

[ Structured organization of documents v, o .
Recursively partitions points into axis 0% o
aligned boxes. . ° ®

O Enables more efficient pruning of °°° .

search space 7 .°
Examine nearby points first. . < o
Ignore any points that are further *
than i und so far.
. O,
d-trees work “well” in “lo / \
. A .
medium” dimensions o /o\
d’dg o>% o &y
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KD-Tree Construction

%o ° ° Pt X Y
o9 0 1 | 0.00| 0.00
. o ® 2 | 1.00| 4.31
[ ]
oo o 3 |013| 285
[ ] [ ] [ ]
[ ] o [ ]
[ ] ° ° :.. ° [ ]
[ ]

Start with a list of d-dimensional points.
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KD-Tree Construction

NO /@\YES

4/13/2017

° o. ° Pt X Y Pt X Y
° 1 |0.00]|0.00 2 100|431
3 |0.13|2.85
[ ] .. [ ]
[ ] ° .: [ ]
Split the points into 2 groups by:
0 Choosing dimension dj and value V (methods to be discussed...)
[0 Separating the points into xfi? Vand .%'le<= V.
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KD-Tree Construction
[ ] b [ ] b [ ] @
e® o YE
) oot NO / N S
° o. ® Pt X Y Pt X Y
° 1 |0.00]|0.00 2 100|431
3 |0.13|2.85
[ ]

Consider each group separately and possibly split again (along
same/different dimension).

[0 Stopping criterion to be discussed...
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KD-Tree Construction

°fe ¢ ) . @\YES
<

[ ® ..
[
. . ® = Pt X Y
ee o 2 1.00 | 4.31
[ [ ] [
[ ] [
[
olc® o Pt Pt X Y
[
®e ° A ° 3 0.13 | 2.85 1 0.00 | 0.00

Consider each group separately and possibly split again (along
same/different dimension).
[0 Stopping criterion to be discussed...
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KD-Tree Construction

\oo/
%2

Continue splitting points in each set
[0 creates a binary tree structure

Each leaf node contains a list of points
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KD-Tree Construction. / .
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Keep one additional piece of information at each node:
O The (tight) bounds of the points at or below this node.
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KD-Tree Construction

Use heuristics to make splitting decisions:
Which dimension do we split along? )
77

/fé% ( So kX ’V”/.\a’%c)e
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Many heuristics...

23|
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center-of-range heuristic

median heuristic
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Nearest Neighbor with KD Trees

s B I N NS

se the tree looking for the nearest neighbor of the query

point.
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Nearest Neighbor with KD Trees

SRR y.
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Examine nearby points first:
[0 Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD Trees

Examine nearby points first:
[0 Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD Trsﬁs
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When we reach a leaf node: Aae “ 5 P

0 Compute the distance to each point in the node. T4 S é O\ P P
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Nearest Neighbor with KD Trees
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When we reach a leaf node:
0 Compute the distance to each point in the node.
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Nearest Neighbor with KD Trees

NNl

Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees

e .. .. ///// \\\\\

P So 4 O,a})b § @b\b

Each time a new closest node is found, update the distance
CeE T
bound —
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Nearest Neighbor with KD Trees

Using the distance bound and bounding box of each node:
[0 Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees

AT N

= @ O
RS B R

Using the distance bound and bounding box of each node:
O Prune parts of the tree that could NOT include the nearest neighbor

: T A
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Nearest Neighbor with KD Trees

Using the distance bound and bounding box of each node:
[0 Prune parts of the tree that could NOT include the nearest neighbor
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Complexity

For (nearly) balanced, binary trees...

Construction
[ Size: \

O Depth: O/MW)

0 Median + send points left right:

O Construction time: ®) (///(,} /{/)
1-NN query /
e mocke

[ Traverse down tree to startiag-point: /@v} (v >

0 Maximum backtrack and traverse: (

0 Complexity range: /V>

oy ) < > ol )
Under some assumptions on distribution of points, we
get O(logN) but exponential in d (see citations in reading)
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Complexity for N Queries

Ask for nearest neighbor to each document

Brute force 1-NN:
Ol ™)

kd-trees:

()Q/&(&) - > @(//é/y)

©Sham Kakade 2017 32

4/13/2017

16



Inspections vs. N and d

?QM/ Qk/)(/
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K-NN with KD Trees

e N
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Exactly the same algorithm, but maintain distance as distance to

urthestof current k nearest neighbors
Complexity is: 1l
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Approximate K-NN with KD Trees

SRIOx VN

g\/\

L e ] SRS \b\bdd\c\b 015%

Before: Prune when distance to bounding box > v
Now: P hen dist to bounding box > |
ow: Prune when distance to bounding box \//D<

Will prune more than allowed, but can guarantee that if we return a neighbor at
distance 7; then there is no neighbor closer than r/a.

In practice this bound is loose...Can be closer to optimal.
Saves lots of search time at little cost in quality of nearest neighbor.
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What about NNs searches
in high dimensions?

KD-trees:
[0 What is going wrong?
@ UX/S m(";go// Spe
[0 Can this be easily fixed?

/e

What do have to utilize?

[0 utilize triangle inequality of metric

O New ideas: ball trees and cover trees
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Ball Trees

Ball-tree Example

level 1 level 2 O
A \o C

¥§g\\6§
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S

level 3 level 4

Ball Tree Construction

Node:

O Every node defines a ball (hypersphere), containing
a subset of the the points (to be searched)
A center
A (tight) radius of the points
Construction:
[0 Root: start with a ball which contains all the data
[ take a ball and make two children (nodes) as follows:

Make two spheres, assign each point (in the parent
sphere) to its closer sphere

Make the two spheres in a “reasonable” manner
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Ball Tree Search

Given point x, how do find its nearest neighbor quickly?

Approach:
[ Start: follow a greedy path through the tree
[ Backtrack and prune: rule out other paths based on the
triange inequality
(just like in KD-trees)
L\‘Pé /(,/MP"(S(KQ,[I\??

e

.. o plovs
How good is |t?/w woe 5T e s i fj“’ ’[/‘f
t ﬁ »
[] Guarantees: p besd oo ¢xec +
[ Practice: ©~¢ ° Vr—sarchy,

P
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Cover trees

What about exact NNs in general metric spaces?

Same ldea: utilize triangle inequality of metric (so
allow for arbitrary metric)

What does the dimension even mean?

/71'4/6 57(/.,C7Lv/\a

cover-tree idea: fﬁ‘/[’ﬁ[ R S =2
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Intrinsic Dimension

How does the volume grow, from radius R to 2R?

Vol ﬁm//zm ) a oA

T (Gl ‘

Can we relax this idea to get at the “intrinsic”
dimension?

[ This is the “doubling” dimension:
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Cover trees: data structure

Ball Trees: each node had associated
1 Center:

O (tight) Radius:

1 Points:

Cover trees:
O Center:
O (tight) Radius:
I Points:
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Cover Tree Complexity

Construction
I Size:
[0 Construction time:
1-NN query
[ Traverse down tree to starting point:
[0 Maximum backtrack and traverse:

Under assumptions that doubling dimension is D.
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Wrapping Up — Important Points

kd-trees
Tons of variants

0 On construction of trees (heuristics for splitting, stopping, representing branches...)

0 Other representational data structures for fast NN search (e.g.,cover trees, ball
trees,...)

Nearest Neighbor Search
Distance metric and data representation are crucial to answer returned

For both...

High dimensional spaces are hard!
O Number of kd-tree searches can be exponential in dimension
Rule of thumb... N >>29... Typically useless.
O Distances are sensitive to irrelevant features
Most dimensions are just noise = Everything equidistant (i.e., everything is far away)
Need technique to learn what featuresiarelimportant for your task 44
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What you need to know

Document retrieval task
[0 Document representation (bag of words)
01 tf-idf

Nearest neighbor search
[0 Formulation
[ Different distance metrics and sensitivity to choice
1 Challenges with large N

kd-trees for nearest neighbor search
1 Construction of tree
[0 NN search algorithm using tree
[0 Complexity of construction and query
[0 Challenges with large d
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