
4/13/2017

1

©Sham Kakade 2017 1

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade

April 13, 2017

Task Description:
Finding Similar Items

Case Study 2: Document Retrieval

2

Announcements:

• HW2 posted

• Project Milestones
– Start early

– Lit. review (>= 3 papers read carefully)

– First rounds of experiments

• Today:
– Review: Sim search, k-NNs, KD-trees

– Today: KD-trees (cont.), ball trees, cover trees

©Kakade 2017

4/13/2017

2

Task 1: Find Similar Documents

©Sham Kakade 2017 3

 To begin…

 Input: Query article

 Output: Set of k similar articles

Document Representation

©Sham Kakade 2017 4

 Bag of words model

4/13/2017

3

Image Search…

5

Where is FAST similarity search important?

6

4/13/2017

4

1-Nearest Neighbor

©Sham Kakade 2017 7

 Articles

 Query:

 1-NN
 Goal:

 Formulation:

 Naïve approach:
Brute force search
 Given a query point

 Scan through each point

 O(N) distance computations per
1-NN query!

 O(Nlogk) per k-NN query!

 What if N is huge???
(and many queries)

Issues with Search Techniques

©Sham Kakade 2017 8

33 Distance Computations

4/13/2017

5

 How big is N?

 How fast do we desire to do recall?

Think about Web Search/Image Search

©Sham Kakade 2017 9

Intuition (?): NN in 1D and Sorting

©Sham Kakade 2017 10

 How do we do 1-NN searches in 1 dim?

 Pre-processing time:

 Query time:

4/13/2017

6

 Smarter approach: kd-trees
 Structured organization of documents

 Recursively partitions points into axis
aligned boxes.

 Enables more efficient pruning of
search space

 Examine nearby points first.

 Ignore any points that are further
than the nearest point found so far.

 kd-trees work “well” in “low-
medium” dimensions
 We’ll get back to this…

KD-Trees

©Sham Kakade 2017 11

KD-Tree Construction

©Sham Kakade 2017 12

Pt X Y

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …

 Start with a list of d-dimensional points.

4/13/2017

7

KD-Tree Construction

©Sham Kakade 2017 13

Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

 Split the points into 2 groups by:
 Choosing dimension dj and value V (methods to be discussed…)

 Separating the points into > V and <= V.

KD-Tree Construction

©Sham Kakade 2017 14

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

 Consider each group separately and possibly split again (along
same/different dimension).
 Stopping criterion to be discussed…

Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …

4/13/2017

8

KD-Tree Construction

©Sham Kakade 2017 15

Pt X Y

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

Pt X Y

1 0.00 0.00

… … …

Y>.1

NO
YES

 Consider each group separately and possibly split again (along
same/different dimension).
 Stopping criterion to be discussed…

KD-Tree Construction

©Sham Kakade 2017 16

 Continue splitting points in each set
 creates a binary tree structure

 Each leaf node contains a list of points

4/13/2017

9

KD-Tree Construction

©Sham Kakade 2017 17

 Keep one additional piece of information at each node:
 The (tight) bounds of the points at or below this node.

KD-Tree Construction

©Sham Kakade 2017 18

 Use heuristics to make splitting decisions:

 Which dimension do we split along?

 Which value do we split at?

 When do we stop?

4/13/2017

10

Many heuristics…

©Sham Kakade 2017 19

median heuristic center-of-range heuristic

Nearest Neighbor with KD Trees

©Sham Kakade 2017 20

 Traverse the tree looking for the nearest neighbor of the query
point.

4/13/2017

11

Nearest Neighbor with KD Trees

©Sham Kakade 2017 21

 Examine nearby points first:
 Explore branch of tree closest to the query point first.

Nearest Neighbor with KD Trees

©Sham Kakade 2017 22

 Examine nearby points first:
 Explore branch of tree closest to the query point first.

4/13/2017

12

Nearest Neighbor with KD Trees

©Sham Kakade 2017 23

 When we reach a leaf node:
 Compute the distance to each point in the node.

Nearest Neighbor with KD Trees

©Sham Kakade 2017 24

 When we reach a leaf node:
 Compute the distance to each point in the node.

4/13/2017

13

Nearest Neighbor with KD Trees

©Sham Kakade 2017 25

 Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees

©Sham Kakade 2017 26

 Each time a new closest node is found, update the distance
bound

4/13/2017

14

Nearest Neighbor with KD Trees

©Sham Kakade 2017 27

 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

Nearest Neighbor with KD Trees

©Sham Kakade 2017 28

 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

4/13/2017

15

Nearest Neighbor with KD Trees

©Sham Kakade 2017 29

 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

Complexity

©Sham Kakade 2017 30

 For (nearly) balanced, binary trees...

 Construction
 Size:

 Depth:

 Median + send points left right:

 Construction time:

 1-NN query
 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Complexity range:

 Under some assumptions on distribution of points, we
get O(logN) but exponential in d (see citations in reading)

4/13/2017

16

Complexity

©Sham Kakade 2017 31

Complexity for N Queries

©Sham Kakade 2017 32

 Ask for nearest neighbor to each document

 Brute force 1-NN:

 kd-trees:

4/13/2017

17

Inspections vs. N and d

©Sham Kakade 2017 33

K-NN with KD Trees

©Sham Kakade 2017 34

 Exactly the same algorithm, but maintain distance as distance to
furthest of current k nearest neighbors

 Complexity is:

4/13/2017

18

Approximate K-NN with KD Trees

©Sham Kakade 2017 35

 Before: Prune when distance to bounding box >

 Now: Prune when distance to bounding box >

 Will prune more than allowed, but can guarantee that if we return a neighbor at
distance , then there is no neighbor closer than .

 In practice this bound is loose…Can be closer to optimal.

 Saves lots of search time at little cost in quality of nearest neighbor.

What about NNs searches
in high dimensions?

©Sham Kakade 2017 36

 KD-trees:

 What is going wrong?

 Can this be easily fixed?

 What do have to utilize?

 utilize triangle inequality of metric

 New ideas: ball trees and cover trees

4/13/2017

19

Ball Trees

©Sham Kakade 2017 37

Ball Tree Construction

©Sham Kakade 2017 38

 Node:

 Every node defines a ball (hypersphere), containing
 a subset of the the points (to be searched)

 A center

 A (tight) radius of the points

 Construction:

 Root: start with a ball which contains all the data

 take a ball and make two children (nodes) as follows:

 Make two spheres, assign each point (in the parent
sphere) to its closer sphere

 Make the two spheres in a “reasonable” manner

4/13/2017

20

Ball Tree Search

©Sham Kakade 2017 39

 Given point x, how do find its nearest neighbor quickly?

 Approach:

 Start: follow a greedy path through the tree

 Backtrack and prune: rule out other paths based on the
triange inequality
 (just like in KD-trees)

 How good is it?

 Guarantees:

 Practice:

Cover trees

©Sham Kakade 2017 40

 What about exact NNs in general metric spaces?

 Same Idea: utilize triangle inequality of metric (so
allow for arbitrary metric)

 What does the dimension even mean?

 cover-tree idea:

4/13/2017

21

Intrinsic Dimension

©Sham Kakade 2017 41

 How does the volume grow, from radius R to 2R?

 Can we relax this idea to get at the “intrinsic”
dimension?

 This is the “doubling” dimension:

Cover trees: data structure

©Sham Kakade 2017 42

 Ball Trees: each node had associated

 Center:

 (tight) Radius:

 Points:

 Cover trees:

 Center:

 (tight) Radius:

 Points:

4/13/2017

22

Cover Tree Complexity

©Sham Kakade 2017 43

 Construction

 Size:

 Construction time:

 1-NN query

 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Under assumptions that doubling dimension is D.

Wrapping Up – Important Points

©Sham Kakade 2017 44

kd-trees

 Tons of variants
 On construction of trees (heuristics for splitting, stopping, representing branches…)

 Other representational data structures for fast NN search (e.g.,cover trees, ball
trees,…)

Nearest Neighbor Search

 Distance metric and data representation are crucial to answer returned

For both…

 High dimensional spaces are hard!
 Number of kd-tree searches can be exponential in dimension

 Rule of thumb… N >> 2d… Typically useless.

 Distances are sensitive to irrelevant features

 Most dimensions are just noise  Everything equidistant (i.e., everything is far away)

 Need technique to learn what features are important for your task

4/13/2017

23

What you need to know

©Sham Kakade 2017 45

 Document retrieval task
 Document representation (bag of words)

 tf-idf

 Nearest neighbor search
 Formulation

 Different distance metrics and sensitivity to choice

 Challenges with large N

 kd-trees for nearest neighbor search
 Construction of tree

 NN search algorithm using tree

 Complexity of construction and query

 Challenges with large d

