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April 13, 2017

Task Description: 
Finding Similar Items

Case Study 2: Document Retrieval
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Announcements:

• HW2 posted

• Project Milestones
– Start early

– Lit. review (>= 3 papers read carefully)

– First rounds of experiments

• Today: 
– Review: Sim search, k-NNs, KD-trees

– Today: KD-trees (cont.), ball trees, cover trees

©Kakade 2017
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Task 1: Find Similar Documents
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 To begin…

 Input: Query article 

 Output: Set of k similar articles

Document Representation
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 Bag of words model
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Image Search…
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Where is FAST similarity search important?
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1-Nearest Neighbor
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 Articles

 Query: 

 1-NN
 Goal: 

 Formulation:

 Naïve approach: 
Brute force search
 Given a query point

 Scan through each point

 O(N) distance computations per 
1-NN query!

 O(Nlogk) per k-NN query!

 What if N is huge???
(and many queries)

Issues with Search Techniques
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33 Distance Computations
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 How big is N? 

 How fast do we desire to do recall? 

Think about Web Search/Image Search
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Intuition (?): NN in 1D and Sorting
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 How do we do 1-NN searches in 1 dim? 

 Pre-processing time:

 Query time: 
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 Smarter approach: kd-trees
 Structured organization of documents

 Recursively partitions points into axis 
aligned boxes.

 Enables more efficient pruning of 
search space

 Examine nearby points first.

 Ignore any points that are further 
than the nearest point found so far.

 kd-trees work “well” in “low-
medium” dimensions
 We’ll get back to this…

KD-Trees
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KD-Tree Construction
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Pt X Y

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …

 Start with a list of d-dimensional points.
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KD-Tree Construction
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Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

 Split the points into 2 groups by:
 Choosing dimension dj and value V (methods to be discussed…)

 Separating the points into > V and  <= V.

KD-Tree Construction
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X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

 Consider each group separately and possibly split again (along 
same/different dimension).
 Stopping criterion to be discussed…

Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …
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KD-Tree Construction
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Pt X Y

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YESNO

Pt X Y

1 0.00 0.00

… … …

Y>.1

NO
YES

 Consider each group separately and possibly split again (along 
same/different dimension).
 Stopping criterion to be discussed…

KD-Tree Construction
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 Continue splitting points in each set 
 creates a binary tree structure

 Each leaf node contains a list of points
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KD-Tree Construction
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 Keep one additional piece of information at each node:
 The (tight) bounds of the points at or below this node.

KD-Tree Construction
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 Use heuristics to make splitting decisions:

 Which dimension do we split along? 

 Which value do we split at?  

 When do we stop?   
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Many heuristics…
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median heuristic center-of-range heuristic

Nearest Neighbor with KD Trees
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 Traverse the tree looking for the nearest neighbor of the query 
point.
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Nearest Neighbor with KD Trees
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 Examine nearby points first: 
 Explore branch of tree closest to the query point first.

Nearest Neighbor with KD Trees
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 Examine nearby points first: 
 Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD Trees
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 When we reach a leaf node: 
 Compute the distance to each point in the node.

Nearest Neighbor with KD Trees

©Sham Kakade 2017 24

 When we reach a leaf node: 
 Compute the distance to each point in the node.
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Nearest Neighbor with KD Trees
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 Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees
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 Each time a new closest node is found, update the distance 
bound
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Nearest Neighbor with KD Trees
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 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

Nearest Neighbor with KD Trees

©Sham Kakade 2017 28

 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees
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 Using the distance bound and bounding box of each node:
 Prune parts of the tree that could NOT include the nearest neighbor

Complexity
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 For (nearly) balanced, binary trees...

 Construction
 Size:

 Depth: 

 Median + send points left right:

 Construction time: 

 1-NN query
 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Complexity range:

 Under some assumptions on distribution of points, we 
get O(logN) but exponential in d (see citations in reading)
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Complexity
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Complexity for N Queries
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 Ask for nearest neighbor to each document

 Brute force 1-NN:

 kd-trees:



4/13/2017

17

Inspections vs. N and d
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K-NN with KD Trees
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 Exactly the same algorithm, but maintain distance as distance to 
furthest of current k nearest neighbors

 Complexity is:
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Approximate K-NN with KD Trees
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 Before: Prune when distance to bounding box > 

 Now: Prune when distance to bounding box >

 Will prune more than allowed, but can guarantee that if we return a neighbor at 
distance , then there is no neighbor closer than           .

 In practice this bound is loose…Can be closer to optimal.

 Saves lots of search time at little cost in quality of nearest neighbor.

What about NNs searches
in high dimensions?
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 KD-trees:

 What is going wrong?

 Can this be easily fixed?

 What do have to utilize?

 utilize triangle inequality of metric

 New ideas: ball trees and cover trees
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Ball Trees
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Ball Tree Construction
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 Node:

 Every node defines a ball (hypersphere), containing 
 a subset of the the points (to be searched)

 A center

 A (tight) radius of the points

 Construction: 

 Root: start with a  ball which contains all the data

 take a ball and make two children (nodes) as follows:

 Make two spheres, assign each point (in the parent 
sphere) to its closer sphere

 Make the two spheres in a “reasonable” manner
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Ball Tree Search
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 Given point x, how do find its nearest neighbor quickly?

 Approach: 

 Start: follow a greedy path through the tree

 Backtrack and prune: rule out other paths based on the 
triange inequality
 (just like in KD-trees)

 How good is it?

 Guarantees:

 Practice:

Cover trees
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 What about exact NNs in general metric spaces?

 Same Idea: utilize triangle inequality of metric (so 
allow for arbitrary metric)

 What does the dimension even mean?

 cover-tree idea:
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Intrinsic Dimension
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 How does the volume grow, from radius R to 2R?

 Can we relax this idea to get at the “intrinsic” 
dimension?

 This is the “doubling” dimension:

Cover trees: data structure

©Sham Kakade 2017 42

 Ball Trees: each node had associated

 Center:

 (tight) Radius:

 Points:

 Cover trees:

 Center:

 (tight) Radius:

 Points:
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Cover Tree Complexity
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 Construction

 Size:

 Construction time: 

 1-NN query

 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Under assumptions that doubling dimension is D.

Wrapping Up – Important Points
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kd-trees

 Tons of variants
 On construction of trees (heuristics for splitting, stopping, representing branches…)

 Other representational data structures for fast NN search (e.g.,cover trees, ball 
trees,…)

Nearest Neighbor Search

 Distance metric and data representation are crucial to answer returned

For both…

 High dimensional spaces are hard!
 Number of kd-tree searches can be exponential in dimension

 Rule of thumb… N >> 2d… Typically useless.

 Distances are sensitive to irrelevant features 

 Most dimensions are just noise  Everything equidistant (i.e., everything is far away)

 Need technique to learn what features are important for your task
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What you need to know
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 Document retrieval task
 Document representation (bag of words)

 tf-idf

 Nearest neighbor search
 Formulation

 Different distance metrics and sensitivity to choice

 Challenges with large N

 kd-trees for nearest neighbor search
 Construction of tree

 NN search algorithm using tree

 Complexity of construction and query

 Challenges with large d


