Case Study 2: Document Retrieval

Task Description: Finding Similar Items

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 13, 2017

©Sham Kakade 2017

1

Announcements:

- HW2 posted
- Project Milestones
 - Start early
 - Lit. review (>= 3 papers read carefully)
 - First rounds of experiments
- Today:
 - Review: Sim search, k-NNs, KD-trees
 - Today: KD-trees (cont.), ball trees, cover trees

©Kaka@e 2017

Issues with Search Techniques

Naïve approach:

Brute force search

- $lue{}$ Given a query point ${\mathcal X}$
- $\hfill\Box$ Scan through each point x^i
- □ O(N) distance computations per 1-NN query!
- □ O(*N*log*k*) per *k*-NN query!

33 Distance Computations

■ What if *N* is huge??? (and many queries)

©Sham Kakade 2017

Think about Web Search/Image Search

■ How big is N?

How big is N?

How big is N?

How of images

How fast do we desire to do recall?

©Sham Kakade 2017

Intuition (?): NN in 1D and Sorting

How do we do 1-NN searches in 1 dim?

■ Pre-processing time:

5.2

Query time:

 \bigcirc (|)

50- +:- y O(N/yN)

0 (kg N)

©Sham Kakade 2017

KD-Trees

- Smarter approach: kd-trees
 - □ Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - ☐ Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.
- kd-trees work "well" in "lowmedium" dimensions

©Sham Kakade 2017

Pt	X	Y
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85

Start with a list of *d*-dimensional points.

©Sham Kakade 2017

11

KD-Tree Construction

- Split the points into 2 groups by:
 - \square Choosing dimension d_j and value V (methods to be discussed...)

©Sham Kakade 2017

- Consider each group separately and possibly split again (along same/different dimension).
 - □ Stopping criterion to be discussed...

©Sham Kakade 2017

13

KD-Tree Construction

- Consider each group separately and possibly split again (along same/different dimension).
 - □ Stopping criterion to be discussed...

©Sham Kakade 2017

- Continue splitting points in each set
 - □ creates a binary tree structure
- Each leaf node contains a list of points

©Sham Kakade 2017

15

KD-Tree Construction All the second second

- Keep one additional piece of information at each node:
 - ☐ The (tight) bounds of the points at or below this node.

©Sham Kakade 2017

- Use heuristics to make splitting decisions:
- Which dimension do we split along?
- Which value do we split at?
- When do we stop?

©Sham Kakade 2017

17

Many heuristics...

©Sham Kakade 2017

Traverse the tree looking for the nearest neighbor of the query point.

©Sham Kakade 2017

19

Nearest Neighbor with KD Trees

- Examine nearby points first:
 - ☐ Explore branch of tree closest to the query point first.

©Sham Kakade 2017

- Examine nearby points first:
 - □ Explore branch of tree closest to the query point first.

©Sham Kakade 2017

21

Nearest Neighbor with KD Trees

- When we reach a leaf node:
 - ☐ Compute the distance to each point in the node.

©Sham Kakade 2017

- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

©Sham Kakade 2017

23

Nearest Neighbor with KD Trees

Then backtrack and try the other branch at each node visited

©Sham Kakade 2017

Each time a new closest node is found, update the distance bound

©Sham Kakade 2017

25

Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - ☐ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

27

Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - ☐ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - ☐ Size:
 - □ Depth:
 - ☐ Median + send points left right:
 - ☐ Construction time:
- 1-NN query
 - ☐ Traverse down tree to starting point:
 - ☐ Maximum backtrack and traverse:
 - □ Complexity range:
- Under some assumptions on distribution of points, we get O(logN) but exponential in d (see citations in reading)

©Sham Kakade 2017

29

Complexity

©Sham Kakade 2017

Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:

©Sham Kakade 2017

31

Inspections vs. N and d

©Sham Kakade 2017

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:

©Sham Kakade 2017

33

Approximate K-NN with KD Trees

- Before: Prune when distance to bounding box >
- Now: Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α .
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

©Sham Kakade 2017

What about NNs searches in high dimensions?

- KD-trees:
 - ☐ What is going wrong?
 - □ Can this be easily fixed?
- What do have to utilize?
 - ☐ utilize triangle inequality of metric
 - ☐ New ideas: ball trees and cover trees

©Sham Kakade 2017

35

Ball-tree Example level 1 level 3 level 4

Ball Tree Construction

- Node:
 - □ Every node defines a ball (hypersphere), containing
 - a subset of the the points (to be searched)
 - A center
 - A (tight) radius of the points
- Construction:
 - ☐ Root: start with a ball which contains all the data
 - □ take a ball and make two children (nodes) as follows:
 - Make two spheres, assign each point (in the parent sphere) to its closer sphere
 - Try to make the two sphere is a "reasonable" manner

©Sham Kakade 2017

37

Ball Tree Search

- Given point x, how do find its nearest neighbor quickly?
- Approach:
 - ☐ Start: follow a greedy path through the tree
 - ☐ Backtrack and prune: rule out other paths based on the triange inequality
 - (just like in KD-trees)
- How good is it?
 - ☐ Guarantees:
 - ☐ Practice:

©Sham Kakade 2017

Cover trees (+ ball trees)

- What about exact NNs searches in high dimensions?
- Idea: utilize triangle inequality of metric (so allow for arbitrary metric)
- cover-tree guarantees:

©Sham Kakade 2017

39

Cover trees: what does the triangle inequality imply?

©Sham Kakade 2017

Cover trees: data structure

©Sham Kakade 2017

41

Wrapping Up – Important Points

kd-trees

- Tons of variants
 - □ On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g.,cover trees, ball trees,...)

Nearest Neighbor Search

Distance metric and data representation are crucial to answer returned

For both...

- High dimensional spaces are hard!
 - $\hfill\square$ Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... N >> 2^d... Typically useless.
 - □ Distances are sensitive to irrelevant features
 - Most dimensions are just noise → Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know

- Document retrieval task
 - □ Document representation (bag of words)
 - □ tf-idf
- Nearest neighbor search
 - □ Formulation
 - □ Different distance metrics and sensitivity to choice
 - ☐ Challenges with large N
- kd-trees for nearest neighbor search
 - □ Construction of tree
 - □ NN search algorithm using tree
 - ☐ Complexity of construction and query
 - ☐ Challenges with large *d*

©Sham Kakade 2017