Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of
Features with Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade
April 4th, 2017

©Sham Kakade 2017 1

What you should know about
Logistic Regression (LR) and Click Prediction

* Click prediction problem:

— Estimate probability of clicking
— Can be modeled as logistic regression

* Logistic regression model: Linear model

* Gradient ascent to optimize conditional likelihood

* Overfitting + regularization

* Regularized optimization
— Convergence rates and stopping criterion

» Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD

* AdaGrad motivation, derivation, and algorithm

©Sham Kakade 2017 2

Problem 1: Complexity of LR Updates

* Logistic regression update:

wEtH) —w + ur {—)\wgt) + a:z(t) [y® — Py =1]x, W(t))]}

%

* Complexity of updates:
— Constant in number of data points

— In number of features?
* Problem both in terms of computational complexity and sample complexity

* What can we with very high dimensional feature spaces?

— Kernels not always appropriate, or scalable
— What else?

©Sham Kakade 2017 3

Problem 2: Unknown Number of Features

i
* For example, bag-of-words features for text data: 05 e g "
— “Mary had a little lamb, little lamb...”
(5 U poo ! L
S (= v :
I T 7 e
7 ™ . .
e RIS ~_ ” L‘ T o [<

[45}% P'ﬁ(\)P’<(\>\ &

* What’s the dimensionality of x? < = ¢ O—F Vocal
* What if we see new word that was not in our vocabulary?

— Obamacare

— Theoretically, just keep going in your learning, and initialize Wopamacare = 0
— In practice, need to re-allocate memory, fix indices,... A big problem for Big Data

©Sham Kakade 2017 4

What Next?

* Hashing & Sketching!

— Addresses both dimensionality issues and new features in one approach!

Let’s start with a much simpler problem: Is a string in our vocabulary?
— Membership query -

* How do we keep track?

— Explicit list of strings
Very slow

{ f o)
- :kw\/

AR o
- . C /(//4 \/75 {//(2
— Fancy Trees and Tries 4 ~ ¥
*_Hard to implement and mainta

W (e,
— Hash tables? < Mﬁ/\/ >
\/\ ((ogﬂ“ﬂﬂ(ﬂﬁ(/> B

©Sham Kakade 2017

valies :
| N NG =y)
* Hash functions map keys to integers (bins):

Hash Functions and Hash Tables

i
Keys can be integers, strings, objects,... /

f—(—/,‘np)/

//eY ‘; Sa e -f(?j(,
Simple example: mod T
= hi)=(aith)%m - = Loz = T

L (4 = -
= hic)= 27 255 . —
— Random choice of (a,b) (usually primes)

If inputs are uniform, bins are uniformly used

From two results can recover (a,b), so not pairwise independent -> Typically use fancier
hash functions

Hash table:

— Store list of objects in each bin
— Exact, but storage still linear in size of object ids, which can be very long

E.g., hashing very long strings, entire documents

©Sham Kakade 2017

Hash Bit-Vector Table-Based
Membership Query

Approximate queries with one-sided error: Accept false positives only
— If we say no, element is not in set (\
— If we say yes, element is very to be likely in set)/1 (Z\ Iy /()

/
\
Given hash function, keep binary bit vector v of length V L (v

Vo= w :

Query Q(i): Element i in set? [(4_(0/ / R /()

= v(he)=
((4)_o S Q/(\):O ol ehmmn cce 1)
CoIIisio% Z7 ((‘) :1 ’f\w R
/ / al;) o ~Jh. S - e
\ (B
PY?“/ < Aﬁ/{ S ¢ 64~ ¢
T o —a - //(/(\e N
Guarantee: One-sided errors, buf may faake many mistakes T
— How can we improve probability of correct answer?
©Sham Kakade 2017 7

Bloom Filter: Multiple Hash Tables

- L\’l o— 1%
* Single hash table = Many false positives 4, sq [/
c
* Multiple hash tables with independent& functions %5
— Apply hy(i),..., hp(iw‘_)
v : e T
. - L)
V., Tﬁl//_\ h (e o)
. Query Q(l)? k——// L (o)
! /J/< \/‘ _ ol s
T_’(o) \JA (AJ(1>)/_;_4’ n.i> yﬁs
/ S
else Vo, ve %\//) e é/
Voes

» Significantly decrease probability of false positives
©Sham Kakade 2017 8

Analysis of Bloom Filter

* Want to keep track o@ith false positive probability
of 6>0... how large m & p~

)
* Simple analysis yields: oz O (V\) \
B n logs % N 1 - 0 (/g(
m=—== ~1.5nlog25 r /%/
pmlogl o b (e

= 5

©Sham Kakade 2017

Sketching Counts

Bloom Filter is super cool, but not what we need...

— We don't just care about whether a feature existed before, but to keep track
of counts of occurrences of features! (assuming x;integer)

* Recall the LR update:

wgt“) — wft) + {—)\wgt) + :zzgt) [y — P(Y =1]xW, W(t))]}

Must keep track of (weighted) counts of each feature:

— E.g., with sparse data, for each non-zero dimension i in x):

Can we generalize the Bloom Filter?
©Sham Kakade 2017

Count-Min Sketch: single vector

* Simpler problem: Count how many times you see each string

* Single hash function:
— Keep Count vector of length m
— every time see string i:

Count[h(i)] < Count[h(i)] + 1

— Again, collisions could be a problem:
¢ gjis the count of element i:

©Sham Kakade 2017

Count-Min Sketch: general case

* Keep p by m Count matrix

* p hash functions:
— Just like in Bloom Filter, decrease errors with multiple hashes
— Every time see string i

Vie{l,...,p}: Countlj, h;(i)] < Count[j, h;(i)] + 1

©Sham Kakade 2017

Querying the Count-Min Sketch

Vjie{l,...,p}: Countlj, hj(i)] < Count[j, h;(i)] + 1

* Query Q(i)?

— What s in Count[j,k]?

— Thus:

— Return:

©Sham Kakade 2017 13

Analysis of Count-Min Sketch

a; = min Count|j, h(i)] > a;
J

* Then, after seeing n elements:

&igai—}—en

* With probability at least 1-6

©Sham Kakade 2017 14

Proof of Count-Min for Point Query with
Positive Counts: Part 1 — Expected Bound

* ik =indicator that i & k collide on hash j:
* Bounding expected value:

* X;; =total colliding mass on estimate of count of j in hash j:

* Bounding colliding mass:

* Thus, estimate from each hash function is close in expectation

©Sham Kakade 2017 15

Proof of Count-Min for Point Query with
Positive Counts: Part 2 — High Probability Bounds

. . €
* What we know: COUTLt[], h] (Z)] =aq; + Xz,j E[Xz,j] < -n
e
* Markov inequality: For z;,...,z, positive iid random variables

P(Vz 2z > aB[z]) < a™"

* Applying to the Count-Min sketch:

©Sham Kakade 2017 16

But updates may be positive or negative
W™ w4 {200 - Py = 1x0, wh)]}

* Count-Min sketch for positive & negative case
— a; no longer necessarily positive

* Update the same: Observe change A, to element i:

Vi eA{l,...,p}: Countlj, h;(i)] = Count[j, h;(i)] + A;

— Each Count[j,h(i)] no longer an upper bound on ga;

* How do we make a prediction?

« Bound: |a; —a;| < 3ellal|
— With probability at least 1-8v/4, where | |a| | = &; | ai|

©Sham Kakade 2017 17

Finally, Sketching for LR

wz(tﬂ) — wz@ + {—)\wz@ + :cgt) [y(t) - P(Y = 1\X(t)aw(t))]}

* Never need to know size of vocabulary!

* At every iteration, update Count-Min matrix:

* Making a prediction:

* Scales to huge problems, great practical implications...
©Sham Kakade 2017 18

Hash Kernels

* Count-Min sketch not designed for negative updates
* Biased estimates of dot products

* Hash Kernels: Very simple, but powerful idea to remove bias
* Pick 2 hash functions:
— h: Justlike in Count-Min hashing

— &:Sign hash function

* Removes the bias found in Count-Min hashing (see homework)

* Define a “kernel”, a projection ¢ for x:

©Sham Kakade 2017 19

Hash Kernels Preserve Dot Products

oilx)= Y E0)x
J:h(j§)=1
* Hash kernels provide unbiased estimate of dot-products!

* Variance decreases as O(1/m)

* Choosing m? For >0, if
log %

2

m=0

€
— Under certain conditions...
— Then, with probability at least 1-6:

(1= ollx—=x'[I3 < [lo(x) — ¢(x)[13 < (1 + €)|lx — x'[|3

©Sham Kakade 2017 20

10

Learning With Hash Kernels

* Given hash kernel of dimension m, specified by h and
— Learn m dimensional weight vector

* Observe data point x
— Dimension does not need to be specified a priori!

e Compute ¢(x):
— Initialize ¢(x)

— For non-zero entries j of x;:

* Use normal update as if observation were ¢(x), e.g., for LR using SGD:

W™ e wl o {xwl® g, (x)y — Py = 1]o(x®), w)]}

©Sham Kakade 2017 21

Interesting Application of Hash Kernels:
Multi-Task Learning

* Personalized click estimation for many users:

— One global click prediction vector w:

¢ But..
— Aclick prediction vector w, per user u:

¢ But..

* Multi-task learning: Simultaneously solve multiple learning related problems:

— Use information from one learning problem to inform the others

In our simple example, learn both a global w and one w, per user:
— Prediction for user u:

— If we know little about user u:

— After a lot of data from user u:

©Sham Kakade 2017 22

11

Problems with Simple
Multi-Task Learning

* Dealing with new user is annoying, just like dealing with new
words in vocabulary

* Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger et al.:
— 3.2M emails
— 40M unique tokens in vocabulary
— 430K users
— 16T parameters needed for personalized classification!

©Sham Kakade 2017 23

Hash Kernels for Multi-Task Learning

* Simple, pretty solution with hash kernels:

— Very multi-task learning as (sparse) learning problem with (huge) joint data point z
for point x and user u:

* Estimating click probability as desired:

* Address huge dimensionality, new words, and new users using hash kernels:

©Sham Kakade 2017 24

12

Simple Trick for Forming Projection ¢(x,u)

* Observe data point x for user u
— Dimension does not need to be specified a priori and user can be new!

* Compute ¢(x,u):
— Initialize ¢(x,u)
— For non-zero entries j of x;:

* E.g., j="Obamacare’
* Need two contributions to ¢:

— Global contribution
— Personalized Contribution

* Simply:

* Learn as usual using ¢(x,u) instead of ¢(x) in update function

©Sham Kakade 2017 25

Results from Weinberger et al. on
Spam Classification: Effect of m

=
N
o
=
=
N

"$1.08
B 103 100 1.00 1

=
Q
=]

o
)
S

~#-global-hashed
0.68 0.67
~#=personalized

1
>
S

=—baseline

o
I
S

spam miss-rate (relative to baseline)
=)
f=2)
o

o
Q
S

18 20 22 24 26
b bits in hash-table

226 entries = | Gb @
8bytes/weight

Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error ¢4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%. E

©Sham Kakade 2017 26

13

Results from Weinberger et al. on
Spam Classification: Multi-Task Effect

1.4
H
= 12
z +[0]
r 1 -=-[1)
2
_E 0.8 [2,3]
L4 -
® 06 [4,7]
2 . [8,15]
g [16,31]
02 (32,64]
E o [64,%)
a i

18 20 22 24 26 ==baseline

b bits in hash-table

Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.
©Sham Kakade 2017 27

What you need to know

Hash functions

Bloom filter

— Test membership with some false positives, but very small number of bits per element
Count-Min sketch

— Positive counts: upper bound with nice rates of convergence

— General case

Application to logistic regression

Hash kernels:
— Sparse representation for feature vectors
— Very simple, use two hash function (Can use one hash function...take least significant bit to define €)
— Quickly generate projection ¢(x)
— Learnin projected space
Multi-task learning:
— Solve many related learning problems simultaneously
— Very easy to implement with hash kernels
— Significantly improve accuracy in some problems (ifthere is enough data from individual users)

©Sham Kakade 2017 28

14

©Sham Kakade 2017

29

©Sham Kakade 2017

30

15

