
Optimization in the “Big Data” Regime

Sham M. Kakade

Machine Learning for Big Data
CSE547/STAT548

University of Washington

S. M. Kakade (UW) Optimization for Big data 1 / 18

Announcements...

HW2 due Mon.
Work on your project milestones

read/related work summary
some empirical work

Today:
Review: discuss classical optimization
New: How do we optimize in the “big data” regime, with large
sample sizes and large dimension?
Bridge classical to modern optimization.

S. M. Kakade (UW) Optimization for Big data 2 / 18

Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n
training examples.

have n training examples (x1, y1), . . . (xn, yn)

have parametric a classifier hθ(x ,w), where w is a d dimensional
vector.

min
w

L(w) where L(w) =
∑

i

loss(h(xi ,w), yi)

“Big Data Regime”: How do you optimize this when n and d are
large? memory? parallelization?

Can we obtain linear time algorithms to find an ε-accurate solution?
i.e. find ŵ so that

L(ŵ)−min
w

L(w) ≤ ε

S. M. Kakade (UW) Optimization for Big data 3 / 18

Plan:

Goal: algorithms to get fixed target accuracy ε.
Review: classical optimization viewpoints
A modern view: can be bridge classical optimization to modern
problems?

Dual Coordinate Descent Methods
Stochastic Variance Reduced Gradient method (SVRG)

S. M. Kakade (UW) Optimization for Big data 4 / 18

Abstraction: Least Squares

min
w

L(w) where L(w) =
n∑

i=1

(w · xi − yi)
2 + λ‖w‖2

How much computation time is required to to get ε accuracy?

n points, d dimensions.
“Big Data Regime”: How do you optimize this when n and d are
large?
More general case: Optimize sums of convex (or non-convex
functions?

some guarantees will still hold

Aside: think of x as a large feature representation.

S. M. Kakade (UW) Optimization for Big data 5 / 18

Review: Direct Solution

min
w

L(w) where L(w) =
n∑

i=1

(w · xi − yi)
2 + λ‖w‖2

solution:
w = (X>X + λI)−1X>Y

where X be the n × d matrix whose rows are xi , and Y is an n-dim
vector.
numerical solution: the “backslash” implementation.
time complexity: O(nd2) and memory O(d2)

Not feasible due to both time and memory.

S. M. Kakade (UW) Optimization for Big data 6 / 18

Review: Gradient Descent (and Conjugate GD)

min
w

L(w) where L(w) =
n∑

i=1

(w · xi − yi)
2 + λ‖w‖2

n points, d dimensions,
λmax, λmin are max and min eigs. of “design matrix” 1

n
∑

i xix>i
iterations and computation time to get ε accuracy:

Gradient Descent (GD):

λmax

λmin
log 1/ε,

λmax

λmin
nd log 1/ε

Conjugate Gradient Descent:√
λmax

λmin
log 1/ε,

√
λmax

λmin
nd log 1/ε

memory: O(d)

Better runtime and memory, but still costly.

S. M. Kakade (UW) Optimization for Big data 7 / 18

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate

S. M. Kakade (UW) Optimization for Big data 8 / 18

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate

S. M. Kakade (UW) Optimization for Big data 8 / 18

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate
S. M. Kakade (UW) Optimization for Big data 8 / 18

Review: Stochastic Gradient Descent

λmin is the min eig. of 1
n
∑

i xix>i
Suppose gradients are bounded by B.
To get ε accuracy:

iterations to get ε-accuracy:

B2

λminε

Computation time to get ε-accuracy:

dB2

λminε

S. M. Kakade (UW) Optimization for Big data 9 / 18

Regression in the big data regime?

min
w

L(w)

How much computation time is required to to get ε accuracy?

“Big Data Regime”: How do you optimize this when n and d are
large?

Can we ’fix’ the instabilities of SGD?
Let’s look at (regularized) linear regression.

Convex optimization: All results can be generalized to smooth+strongly
convex loss functions.

Non-convex optimization: some ideas generalize.

S. M. Kakade (UW) Optimization for Big data 10 / 18

Duality (without Duality)

w = (X>X + λI)−1X>Y
= X>(XX> + λI)−1Y

:=
1
λ

X>α

where α = (I + XX>/λ)−1Y .

idea: let’s compute the n-dim vector α.
let’s do this with coordinate ascent

S. M. Kakade (UW) Optimization for Big data 11 / 18

SDCA: stochastic dual coordinate ascent

G(α1, α2, . . . αn) =
1
2
α>(I + XX>/λ)α− Y>α

the minimizer of G(α) is

α = (I + XX>/λ)−1Y

SDCA:
start with α = 0.
choose coordinate i randomly, and update:

αi = argminzG(α1, . . . αi−1, z, . . . , αn)

easy to do as we touch just one datapoint.
return w = 1

λX>α.

S. M. Kakade (UW) Optimization for Big data 12 / 18

SDCA: the algorithm

G(α1, α2, . . . αn) =
1
2
α>(I + XX>/λ)α− Y>α

start with α = 0, w = 1
λX>α.

1 choose coordinate i randomly, and compute difference:

∆αi =
(yi − w · xi)− αi

1 + ‖xi‖2/λ

2 update:

αi ← αi + ∆αi , w ← w +
1
λ

xi ·∆αi

return w = 1
λX>α.

S. M. Kakade (UW) Optimization for Big data 13 / 18

Guarantees: speedups for the big data regime

n points, d dimensions, λav average eigenvalue
Computation time to get ε accuracy gradient descent:
(Shalev-Shwartz & Zhang ’12)

GD vs SDCA:

λmax

λmin
n d log 1/ε→

(
n + d

λav

λmin

)
d log 1/ε

conjugate GD vs acceleration+SDCA.
One can accelerate SDCA as well. (Frosting, Ge, K., Sidford, 2015))

S. M. Kakade (UW) Optimization for Big data 14 / 18

Comparisons to GD

both algorithms touch one data point at a time, with same
computational cost per iteration.
SDCA has “learning rate” which adaptive to the data point.
GD has convergence rate of 1/ε and SDCA has log 1/ε convergence
rate.
memory: SDCA: O(n + d), SGD: O(d)

SDCA: can touch points in any order.

S. M. Kakade (UW) Optimization for Big data 15 / 18

SDCA advantages/disadvantages

What about more general convex problems? e.g.

min
w

L(w) where L(w) =
∑

i

loss(h(xi ,w), yi)

the basic idea (formalized with duality) is pretty general for convex loss(·).
works very well in practice.

memory: SDCA needs O(n + d) memory, while SGD is only O(d).
What about an algorithm for non-convex problems?

SDCA seems heavily tied to the convex case.
would an algo that is highly accurate in the convex case and sensible in
the non-convex case.

S. M. Kakade (UW) Optimization for Big data 16 / 18

(another idea) Stochastic Variance Reduced Gradient
(SVRG)

1 exact gradient computation: at stage s, using w̃s, compute:

∇L(w̃s) =
1
n

n∑
i=1

∇loss(w̃s, (xi , yi))

2 corrected SGD: initialize w ← w̃s. for m steps,

sample a point (x , y)
w ← w − η

(
∇loss(w , (x , y))−∇loss(w̃s, (x , y)) +∇L(w̃s)

)
3 update and repeat: w̃s+1 ← w .

Two ideas:
If w̃ = w∗, then no update.
unbiased updates: blue term is mean 0.

S. M. Kakade (UW) Optimization for Big data 17 / 18

(another idea) Stochastic Variance Reduced Gradient
(SVRG)

1 exact gradient computation: at stage s, using w̃s, compute:

∇L(w̃s) =
1
n

n∑
i=1

∇loss(w̃s, (xi , yi))

2 corrected SGD: initialize w ← w̃s. for m steps,

sample a point (x , y)
w ← w − η

(
∇loss(w , (x , y))−∇loss(w̃s, (x , y)) +∇L(w̃s)

)
3 update and repeat: w̃s+1 ← w .

Two ideas:
If w̃ = w∗, then no update.
unbiased updates: blue term is mean 0.

S. M. Kakade (UW) Optimization for Big data 17 / 18

Guarantees of SVRG

n points, d dimensions, λav average eigenvalue
Computation time to get ε accuracy gradient descent:
(Johnson & Zhang ’13)

GD vs SDCA:

λmax

λmin
n d log 1/ε→

(
n + d

λav

λmin

)
d log 1/ε

conjugate GD vs ?? √
λmax

λmin
n d log 1/ε→ ??

memory: O(d)

S. M. Kakade (UW) Optimization for Big data 18 / 18

