Optimization in the “Big Data” Regime

Sham M. Kakade

Machine Learning for Big Data
CSE547/STAT548

University of Washington

S. M. Kakade (UW) Optimization for Big data 1/18

Announcements...

@ HW2 due Mon.

@ Work on your project milestones

o read/related work summary
e some empirical work

Today:
@ Review: discuss classical optimization

@ New: How do we optimize in the “big data” regime, with large
sample sizes and large dimension?
Bridge classical to modern optimization.

S. M. Kakade (UW) Optimization for Big data 2/18

Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n
training examples.

@ have ntraining examples (X1, 1), ... (Xn, ¥n)

@ have parametric a classifier hy(x, w), where w is a d dimensional
vector.

mmi/n L(w) where L(w Z loss(h(x;, w), yi)

@ “Big Data Regime”: How do you optimize this when nand d are
large? memory? parallelization?

Can we obtain linear time algorithms to find an e-accurate solution?
i.e. find W so that
L(W) —minL(w) <e
w

S. M. Kakade (UW) Optimization for Big data 3/18

@ Goal: algorithms to get fixed target accuracy e.

@ Review: classical optimization viewpoints

@ A modern view: can be bridge classical optimization to modern
problems?

@ Dual Coordinate Descent Methods
e Stochastic Variance Reduced Gradient method (SVRG)

S. M. Kakade (UW) Optimization for Big data 4/18

Abstraction: Least Squares

n
min L(w) where L(w) = > (w - x; — yi)? + Al w]?

i=1
How much computation time is required to to get € accuracy?

@ n points, d dimensions.

@ “Big Data Regime”: How do you optimize this when nand d are
large?

@ More general case: Optimize sums of convex (or non-convex
functions?
e some guarantees will still hold

Aside: think of x as a large feature representation.

S. M. Kakade (UW) Optimization for Big data 5/18

Review: Direct Solution

n
min L(w) where L(w) = D (W xi = yi)? + Allwl?
i=1
@ solution:
w=(X"X+)TXTY
where X be the n x d matrix whose rows are x;, and Y is an n-dim
vector.
@ numerical solution: the “backslash” implementation.
@ time complexity: O(nd?) and memory O(d?)

Not feasible due to both time and memory.

S. M. Kakade (UW) Optimization for Big data 6/18

Review: Gradient Descent (and Conjugate GD)

n
min L(w) where L(w) = > (W xi — yi)? + Aljwl?
i=1
@ npoints, d dimensions,
@ Amax, Amin @re max and min eigs. of “design matrix” 1 Z,x,xT

@ # iterations and computation time to get ¢ accuracy:
o Gradient Descent (GD):

)\max)\max
log 1 ndlo 1/e
o 09 /€, pw g1/
e Conjugate Gradient Descent:

1/—)‘"‘“ log 1/e, ,/—/\max ndlog1/e
)\min >\min

Better runtime and memory, but still costly.

@ memory: O(d)

S. M. Kakade (UW) Optimization for Big data

7/18

Review: Stochastic Gradient Descent (SGD)

@ SGD update rule: at each time t,
sample a point (X;, y;)
W< w—n(w-Xi—)X

S. M. Kakade (UW) Optimization for Big data 8/18

Review: Stochastic Gradient Descent (SGD)

@ SGD update rule: at each time t,
sample a point (X;, y;)
W< w—n(w-Xi—)X

S. M. Kakade (UW) Optimization for Big data 8/18

Review: Stochastic Gradient Descent (SGD)

@ SGD update rule: at each time t,
sample a point (X;, y;)
W w—n(W- X — y)Xi
@ Problem: even if w = w,, the update changes w.
Rate: convergence rate is O(1/¢), with decaying n
simple algorithm, light on memory, but poor convergence rate

S. M. Kakade (UW) Optimization for Big data 8/18

Review: Stochastic Gradient Descent

@ Amin is the min eig. of 13~ x;x,"
@ Suppose gradients are bounded by B.

@ To get e accuracy:
o # iterations to get e-accuracy:

BZ

Amin€

o Computation time to get e-accuracy:

aB?

Amin€

S. M. Kakade (UW) Optimization for Big data

9/18

Regression in the big data regime?

min L(w)
How much computation time is required to to get € accuracy?
@ “Big Data Regime”: How do you optimize this when n and d are
large?
o Can we ‘fix’ the instabilities of SGD?

@ Let’s look at (regularized) linear regression.

o Convex optimization: All results can be generalized to smooth+strongly
convex loss functions.

(]

@ Non-convex optimization: some ideas generalize.

S. M. Kakade (UW) Optimization for Big data 10/18

Duality (without Duality)

XTX+A)T'XTY
XT(XXT +)7y
1

= XXTa

where a = (I+ XXT/\)71Y.

@ idea: let's compute the n-dim vector a.
@ let’s do this with coordinate ascent

S. M. Kakade (UW) Optimization for Big data 11/18

SDCA: stochastic dual coordinate ascent

1
Glat,ap,...ap) = EaT(I—G—XXT/)\)a - Y'a

@ the minimizer of G(«) is
a=(+XX"/N)Y

@ SDCA:

o start with a = 0.
e choose coordinate / randomly, and update:

aj = argmin, G(a1, ... @j—1,2Z,...,Qp)

@ easy to do as we touch just one datapoint.
o return w = 1X"a.

S. M. Kakade (UW) Optimization for Big data 12/18

SDCA: the algorithm

Glaq,ap,...ap) = %aT(/—F XXT/Na—-YTa

o startwitha =0, w = 1XTa.
@ choose coordinate i randomly, and compute difference:

Vi—w-x;)—

Aoj =
' T+ ([xill2 /A

@ update:
1
aj < aj + Aaj, W%W+XX/'A04,'

o return w = 1 X"a.

S. M. Kakade (UW) Optimization for Big data 13/18

Guarantees: speedups for the big data regime

@ n points, d dimensions, \,, average eigenvalue

@ Computation time to get € accuracy gradient descent:
(Shalev-Shwartz & Zhang '12)

o GD vs SDCA:

/\maxndlog 1/e — (n+ dAaV)dlog 1/e
A Amin

min

e conjugate GD vs acceleration+SDCA.
One can accelerate SDCA as well. (Frosting, Ge, K., Sidford, 2015))

S. M. Kakade (UW) Optimization for Big data 14/18

Comparisons to GD

@ both algorithms touch one data point at a time, with same
computational cost per iteration.

@ SDCA has “learning rate” which adaptive to the data point.

@ GD has convergence rate of 1/¢ and SDCA has log 1/e convergence
rate.

@ memory: SDCA: O(n+ d), SGD: O(d)
@ SDCA: can touch points in any order.

S. M. Kakade (UW) Optimization for Big data 15/18

SDCA advantages/disadvantages

@ What about more general convex problems? e.g.

mMi/n L(w) where L(w Z loss(h(x;, w), yi)

o the basic idea (formalized with duality) is pretty general for convex loss(+).
e works very well in practice.
@ memory: SDCA needs O(n + d) memory, while SGD is only O(d).
@ What about an algorithm for non-convex problems?

o SDCA seems heavily tied to the convex case.
e would an algo that is highly accurate in the convex case and sensible in
the non-convex case.

S. M. Kakade (UW) Optimization for Big data 16/18

(another idea) Stochastic Variance Reduced Gradient

(SVRG)

@ exact gradient computation: at stage s, using ws, compute:

VL(ws) = ZVIOSS Ws, (X, ¥i))
i=1

@ corrected SGD: initialize w «+ ws. for m steps,
sample a point (X,)
w < w —n (Vioss(w, (X, y))—Vloss(Ws, (X, y)) + VL(Ws))

© update and repeat: wg, 1 < w.

S. M. Kakade (UW) Optimization for Big data 17/18

(another idea) Stochastic Variance Reduced Gradient

(SVRG)

@ exact gradient computation: at stage s, using ws, compute:

VL(ws) = ZVIOSS Ws, (X, ¥i))
i=1

@ corrected SGD: initialize w «+ ws. for m steps,
sample a point (X,)
w < w —n (Vioss(w, (X, y))—Vloss(Ws, (X, y)) + VL(Ws))

© update and repeat: wg, 1 < w.

Two ideas:
o If w = w,, then no update.
@ unbiased updates: blue term is mean 0.

S. M. Kakade (UW) Optimization for Big data 17/18

Guarantees of SVRG

@ npoints, d dimensions, \,, average eigenvalue

@ Computation time to get € accuracy gradient descent:
(Johnson & Zhang '13)

e GD vs SDCA:

min ml

A
/" ndlog1/e — 77
)\min

ima"ndlog1/e—>(n+d)dlog1/e

e conjugate GD vs ??

e memory: O(d)

S. M. Kakade (UW) Optimization for Big data 18/18

