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Announcements...

Poster session: June 1, 9-11:30a
Request: CSE grad students, could you please help others with poster
printing?
Aravind: Ask by 2p on Weds for help printing.
Prepare, at most, a 2 minute verbal summary.
Come earlier to setup.
Submit your poster on Canvas.

Due Dates: Please be on time.

Today:
review: Linear bandits
today: contextual bandits, game trees?

S. M. Kakade (UW) Optimization for Big data 2 / 14



Review
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Bandits in practice: two major issues

The decision space is very large.
Drug cocktails
Ad design

We often have “side information” when making a decision
history of a user
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More real motivations...
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Linear bandits

An additive effects model.
Suppose each round we take a decision x 2 D ⇢ Rd .

x is paths on a graph.
x is a feature vector of properties of an ad
x is a which drugs are being taken

Upon taking action x , we get reward r , with expectation:

E[r |x ] = µ>x

only d unknown parameters (and “effectively” 2d actions)
W desire an algorithm A (mapping histories to decisions), which has
low regret.

Tµ>x⇤ �
TX

t=1

E[µ>xt |A] ??

(where x⇤ is the best decision)
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Example: Shortest paths...
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Algorithm Idea

again, let’s think of optimism in the face of uncertainty
we observed some r1, . . . rt�1, and have taken x1, . . . xt�1.
Questions:

what is an estimate of the reward of E[r |x ] and what is our uncertainty?
what is an estimate of µ and what is our uncertainty?
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Regression!

Define:
At :=

X

⌧<t

x⌧x>
⌧ + �I, bt :=

X

⌧<t

x⌧ r⌧

Our estimate of µ
µ̂t = A�1

t bt

Confidence of our estimate:

kµ� µ̂tk2
At

 O(d log t)
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LinUCB

Again, optimism in the face of uncertainty.
Define:

Bt := {⌫|k⌫ � µ̂tk2
At

 Od log t}
(Lin UCB) take action:

xt = argmaxx2D max
⌫2Bt

⌫>x

then update At , Bt , bt , and µ̂t .
Equivalently, take action:

xt = argmaxx2D µ̂>
t x + (d log t)

q
xA�1

t x
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LinUCB: Geometry
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LinUCB: Confidence intervals
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Today
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LinUCB

Regret bound of LinUCB

Tµ>x⇤ �
TX

t=1

E[µ>xt ]  ⇤(d
p

T )

(this is the best possible, up to log factors).
Compare to O(

p
KT )

Independent of number of actions.
k -arm case is a special case.

Thompson sampling: This is a good algorithm in practice.
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Proof Idea...

Stats: need to show that Bt is a valid confidence region.
Geometric lemma: The regret is upper bounded by the:

log
volume of posterior cov

volume of prior cov

Then just bound the worst case log volume change.
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What about context?
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The Contextual Bandit Game

Game: for t = 1, 2, . . .
At each time t , we obtain context (e.g. side information, user
information) ct
Our feasible action set is At .
We choose arm at 2 At and receive reward rt,at .
(what assumptions on the reward process?)

Goal: Algorithm A to have low regret:

E[
X

t

(rt ,a⇤
t
� rt)|A] ??

where E[rt ,a⇤
t
] is the optimal expected reward at time t .
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How should we model outcomes?

Example: ad (or movie, song, etc) prediction.
What is prob. that a user u clicks on an ad a.
How should we model the click probability of a for user u?
Featurizations: suppose we have �

ad

(a) 2 Rd
ad and �

user

(u) 2 Rd
user .

We could make an “outer product” feature vector x as:

x(a, u) = Vector(�
ad

(a)�
user

(u)>) 2 Rd
ad

d
user

We could model the probabilities as:

E[click = 1|a, u] = µ>x(a, u)

(or log linear)
How do we estimate µ?
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Contextual Linear bandits

Suppose each round t , we take a decision x 2 Dt ⇢ Rd

(Dt may be time varying).
map each ad/user a to x(a, u).
Dt = {x(a, ut)|a is a feasible ad at time t}
Our decision is a feature vector in x 2 Dt .

Upon taking action xt 2 Dt , we get reward rt , with expectation:

E[rt |xt 2 Dt ] = µ>xt

(here µ is assumed constant over time).
Our regret:

E[
X

t

(µ>xt ,a⇤
t
� µ>xt)|A] ??

(where xt ,a⇤
t

is the best decision at time t)
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Algorithm

let’s just run linUCB (or Thompson sampling)
Nothing really changes:

At and bt are the same updating rules
now our decision is:

xt = argmaxx2Dt
max
⌫2Bt

⌫>x

i.e.
xt = argmaxx2Dt

µ̂>
t x + (d log t)

q
xA�1

t x

Regret bound is still O(d
p

T ).
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