Adaptive Gradient Methods
AdaGrad / Adam

—__

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade

©Sham Kakade 2017 1

Announcements:

* HW3 posted

— Dual coordinate ascent
— (some review of SGD and random features)

* Projects: the term end is approaching!

* Today:
— Review: adaptive gradient methods
— Today: momentum; parallelization

©Kakage 2017




Review

©Sham Kakade 2017

Curvature approximation:

* Oneidea:
27 v 1 T
Vi(w) ~ 2> gi(w)g(w)
T4 <\
where g_t(w) is the gradient of the t-th data point

* Many ideas try to use this approximation V/ § /)
— Quasi-Newton methods, Gauss newton methods .
— Ellipsoid method (sort of)

©Sham Kakade 2017




Mahalanobis Regret Bounds

wlt+h) = arg min |w — (w(®) —nA7'g,)| 4

¢ What A to choose?
* Regret bound now:

T P
\‘/’ 1
/ )y _ * - (1) _ w*lI2
E :«Et(W ) — Le(w )>S 277||W w HA+ 5

=1~

*  What if we minimize upper bound on regeet w.r.t. Ain hin}yg/n/

©Sham Kakade 2017

I\/Iahalanobls I? fret I\/Imlmlzatlj)n
r<}. L/"

mmz g;‘FA gt subject to A = 0,tr(A) < C
t=1
* Solution:

1
T 2
A=c <Z gtgf>
t=1

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

* Objective:

* A defines the norm of the metric space we should be operating in

©Sham Kakade 2017




AdaGrad Algorithm

* Attime t, estimate optimal (sub)gradient modification A by

* Fordlarge, A;is computiiclona y intensive to compute. Instead,

/(7”}/4é>; ( IGCZ///(\ %J{(‘:E;;

* Then, algorithm is a simple modification of normal updates:

(t+1) _ : — (w® _ nd; “Lo2.
w = arg min W — (w ndiag(At) gt)Hd1ag(At)

©Sham Kakade 2017 7

AdaGrad in Euclidean Space
* ForWw = RY, \ \A/% %,‘ﬁ?h%/

* For each feature dimension, a [P O
t+1 t —_—
wi ) — UJZ( ) _ Nt,iGt,i
where
Nti =
e Thatis,

* Each feature dimension
— Adapts with t
— Takes geometry of the past observations into account
— Primary role of n is determining rate the first time a feature is encountered

©Sham Kakade 2017 8




AdaGrad Theoreti (aHI Guarantees

* AdaGrad regret bound: O R — max Hw(t) B W*Hoo

T i d q
Eﬁm“))—et(w*%s R)> grmilla v
t=1 =1

) T (2
— In stochastic setting: %f/ 0}4 ’,

Z(
2]

T
1 2R
_E ( @ 1] = * _OOE ( .

2

4N (e Scahy
4+ ,O@H

* This is used in practice.

* Many cool examples. Let’s just examine one...
©Sham Kakade 2017 9

AdaGrad Theoretical Example

* Expect to out-perform when gradient vectors are sparse

* SVM hinge loss example:

b(w) =[1—y" (x',w)]y
x! e {-1,0,1}¢
* If x{ # 0 with probability o< j~%, o >1

1 o ¢ * W™ 1-a/2
E [5 <T;w()>] —Uw ):0<ﬁ-max{1ogd,d / }>

. . ) 1< 0 Y [[w*]oo
(sort of) previously bound: E [é <T ;w ﬂ —Uw*) =0 < \/?i)

©Sham Kakade 2017 10




Today: Adam, Momentum,
Comparisons

©Sham Kakade 2017

A DA M Adam update rule consists of the following steps

o Compute gradient g; at current time ¢
e Like AdaGrad but e Update biased first moment estimate
with “forgetting” o im0
* The algo has
component-wise
updates Vi = favir + (1-po)g?

o Update biased second raw moment estimate

o Compute bias-corrected first moment estimate

AL
m = T ﬁi
o Compute bias-corrected second raw moment estimate
% V¢
Ve = -
o Update parameters
8, =0, 1-a—0’




Momentum Algorithm

* (Polyak 1964) The Heavy Ball method
* Two step procedure:

Pk = —Vf(zk) + Brpr—1
Ti+1 = Tk + 0Pk

« Theory: asymptotically, it replaces condition number k with root(x).

* Practice: Used with stochastic gradients. The results are mixed (both in
the exact and stochastic case).

©Sham Kakade 2017 13

Nesterov’s Acceleration Algorithm
é@ A(c, CD

—Vif(x) e} 4 Xkt
PY ./ Xk+1 ./Vf(yk]
Xk Xk—1

Xk—1 X Yk

* (Nesterov 1983) Momentum done right:
* Two step procedure:
Yet1 < Tk + Bre(Tk — Tp—1)

1
Tht1 < Ykt1 — sz (Yr+1),

Theory: It replaces condition number k with root(x).
Practice: We ne i iapt{it’s "great” in the determistic case)

©Sham Kakade 2017 14




Comparisons: MNIST, Sigmoid 100 layer

0.971 I

momentum [0.125] adam [0.001] adadelta [0.9] adagrad [0.075] sad [0.5]

méthed haRkge 2017

0.970

0.969 Color

W momentum [0.125]

¥ adam [0.001]

® adadelta [0.9]

™ adagrad [0.075]
sgd [0.5]

0.968

test set accuracy

0.967

0.966

comparisons: MNIST, Tanh 100 layer

0.966

Color

W momentum [0.125]

* adam [0.001]

™ adadelta [0.95]

™ adagrad [0.05]
sad [1.0]

test set accuracy
o
ir=
o
-

0.962

0.960
momentum [0.125] adam [0.001] adadelta [0.95] adagrad [0.05] sgd [1.0]

method 3me 5017




Comparisons: Sigmoid, Relu, Sigmoid

0.980

0.978

test set accuracy

0.976

momentum [0.2] adam [0.002] adadelta [0.975] adagrad [0.05] sgd [1.0]

odsthednams, 7

0.974

Color

= momentum [0.2]
adam [0.002]

W adadelta [0.975]

M adagrad [0.05]
sgd [1.0]

Take Aways / Perspective

Curvature adaptive methods can (in principle and in practice)
speed up the optimization
— For exact gradient methods, they are widely used

With regards to SGD, the empirical results are more mixed.

Scalar learning rate case: In practice, we often need to turn the
learning rate down. What is the “right” way to do this?
— Sadly, there isn’t a clear “universal” picture in the convex case (1/T,
1/Root(t), constant, etc depending on the setting)
— So how do we expect reasonable adaptive algorithms in the non-convex
case?
Using “matrix” valued curvature: Often use diagonal scalings

— The ‘choice’ is problem dependent (scale subsets of coordinates/nodes
jointly, scale individual coordinates, etc)

— How to effectively turn down learning rates?
Can we get a clearer picture?

©Sham Kakade 2017




Acknowledgments

Some figs taken from: http://int8.io/comparison-of-
optimization-technigues-stochastic-gradient-descent-
momentum-adagrad-and-adadelta/

http://awibisono.github.io/2016/06/20/accelerated-gradient-

descent.html

http://sebastianruder.com/optimizing-gradient-descent/

©Sham Kakade 2017

10



