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Announcements:

* HW3 posted

— Dual coordinate ascent
— (some review of SGD and random features)

* Projects: the term end is approaching!

* Today:
— Review: adaptive gradient methods
— Today: momentum; parallelization
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Review
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Curvature approximation:

* Oneidea:
27 v 1 T
Vi(w) ~ 2> gi(w)g(w)
T4 <\
where g_t(w) is the gradient of the t-th data point

* Many ideas try to use this approximation V/ § /)
— Quasi-Newton methods, Gauss newton methods .
— Ellipsoid method (sort of)
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Mahalanobis Regret Bounds

wlt+h) = arg min |w — (w(®) —nA7'g,)| 4

¢ What A to choose?
* Regret bound now:
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*  What if we minimize upper bound on regeet w.r.t. Ain hin}yg/n/

©Sham Kakade 2017

I\/Iahalanobls I? fret I\/Imlmlzatlj)n
r<}. L/"

mmz g;‘FA gt subject to A = 0,tr(A) < C
t=1
* Solution:
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For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

* Objective:

* A defines the norm of the metric space we should be operating in
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AdaGrad Algorithm

* Attime t, estimate optimal (sub)gradient modification A by

* Fordlarge, A;is computiiclona y intensive to compute. Instead,

/(7”}/4é>; ( IGCZ///(\ %J{(‘:E;;

* Then, algorithm is a simple modification of normal updates:

(t+1) _ : — (w® _ nd; “Lo2.
w = arg min W — (w ndiag(At) gt)Hd1ag(At)
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AdaGrad in Euclidean Space
* ForWw = RY, \ \A/% %,‘ﬁ?h%/

* For each feature dimension, a [P O
t+1 t —_—
wi ) — UJZ( ) _ Nt,iGt,i
where
Nti =
e Thatis,

* Each feature dimension
— Adapts with t
— Takes geometry of the past observations into account
— Primary role of n is determining rate the first time a feature is encountered
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AdaGrad Theoreti (aHI Guarantees

* AdaGrad regret bound: O R — max Hw(t) B W*Hoo
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— In stochastic setting: %f/ 0}4 ’,
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* This is used in practice.

* Many cool examples. Let’s just examine one...
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AdaGrad Theoretical Example

* Expect to out-perform when gradient vectors are sparse

* SVM hinge loss example:

b(w) =[1—y" (x',w)]y
x! e {-1,0,1}¢
* If x{ # 0 with probability o< j~%, o >1

1 o ¢ * W™ 1-a/2
E [5 <T;w()>] —Uw ):0<ﬁ-max{1ogd,d / }>

. . ) 1< 0 Y [[w*]oo
(sort of) previously bound: E [é <T ;w ﬂ —Uw*) =0 < \/?i)
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Today: Adam, Momentum,
Comparisons
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A DA M Adam update rule consists of the following steps

o Compute gradient g; at current time ¢
e Like AdaGrad but e Update biased first moment estimate
with “forgetting” o im0
* The algo has
component-wise
updates Vi = favir + (1-po)g?

o Update biased second raw moment estimate

o Compute bias-corrected first moment estimate

AL
m = T ﬁi
o Compute bias-corrected second raw moment estimate
% V¢
Ve = -
o Update parameters
8, =0, 1-a—0’




Momentum Algorithm

* (Polyak 1964) The Heavy Ball method
* Two step procedure:

Pk = —Vf(zk) + Brpr—1
Ti+1 = Tk + 0Pk

« Theory: asymptotically, it replaces condition number k with root(x).

* Practice: Used with stochastic gradients. The results are mixed (both in
the exact and stochastic case).
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Nesterov’s Acceleration Algorithm
é@ A(c, CD

—Vif(x) e} 4 Xkt
PY ./ Xk+1 ./Vf(yk]
Xk Xk—1

Xk—1 X Yk

* (Nesterov 1983) Momentum done right:
* Two step procedure:
Yet1 < Tk + Bre(Tk — Tp—1)

1
Tht1 < Ykt1 — sz (Yr+1),

Theory: It replaces condition number k with root(x).
Practice: We ne i iapt{it’s "great” in the determistic case)
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Comparisons: MNIST, Sigmoid 100 layer
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comparisons: MNIST, Tanh 100 layer
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Comparisons: Sigmoid, Relu, Sigmoid
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Take Aways / Perspective

Curvature adaptive methods can (in principle and in practice)
speed up the optimization
— For exact gradient methods, they are widely used

With regards to SGD, the empirical results are more mixed.

Scalar learning rate case: In practice, we often need to turn the
learning rate down. What is the “right” way to do this?
— Sadly, there isn’t a clear “universal” picture in the convex case (1/T,
1/Root(t), constant, etc depending on the setting)
— So how do we expect reasonable adaptive algorithms in the non-convex
case?
Using “matrix” valued curvature: Often use diagonal scalings

— The ‘choice’ is problem dependent (scale subsets of coordinates/nodes
jointly, scale individual coordinates, etc)

— How to effectively turn down learning rates?
Can we get a clearer picture?
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