Case Study 1: Estimating Click Probabilities

Adaptive Gradient Methods
AdaGrad / Adam

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade

©Sham Kakade 2017 1

The Problem with GD (and SGD)
/

o (6,)

©Sham Kakade 2017

Adaptive Gradient Methods: Convex Case

What we want?

Newton’s method:
w 4+ w — [V*L(w)] "' VL(w)
Why is this a good idea?

— QGuarantees?

— Stepsize?

Related ideas:

— Conjugate Gradient/Acceleration:
— L-BFGS
— Quasi-Newton methods

Adaptive Gradient Methods: Non-Cvx Case

e What do we want?
— Hessian may not be PSD, so is Newton’s method a descent method?

e QOtherideas:
— Natural Gradient methods:

— Curvature adaptive:
* Adagrad, AdaDelta, RMS prop, ADAM, I-BFGS, heavy ball gradient, momemtum

— Noise injection:
* Simulated annealing, dropout, Langevin methods

e (Caveats:

— Batch methods may be poor: “On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima”

Natural Gradient Idea

Probabilistic models and maximum likelihood estimation:
L(w) = —log Pr(data|w)
True likelihood function:
L(w) = —E,_plog Pr(z|w)

where z is sampled form the underling data distribution D.
Suppose the model is correct, i.e. z~ Pr(z|w*) for some w"*
— Let’s look at the Hessian at w*™

VZL(’UJ*) = EzNPr(z|w*)[_v2IOgPr(Z‘w*)]
= E.pa(zju) [V log Pr(z|w*)(V log Pr(z|w*))]

How do we approximate the Hessian at w?

Fisher Information Matrix

Define the Fisher matrix:

F(w) = E, przjw)|[VIlogPr(zlw)(Vlog Pr(z\w))T]

If the model is correct and if w —> w*, then F(w) = F(w")

Natural Gradient: Use the update rule:

w < w — [F(w)]"'VL(w)

Empirically, use LA(w) and

A 1

F(w) := ;th(w)gt(w)T

where g_t(w) is the gradient of the t-th data point

Curvature approximation:

* Oneidea:
7 1
ViL(w) =~ ;th(w)gt(w)T
t

where g_t(w) is the gradient of the t-th data point

* Many ideas try to use this approximation
— Quasi-Newton methods, Gauss newton methods
— Ellipsoid method (sort of)

M Otlvatl ng Ad a G ra d (Duchi, Hazan, Singer 2011)

Assuming W & Ra,l standard stochastic (sub)gradient descent
updates are of the form:

WD

ST W, — MGt
Should all features share the same learning rate?

Motivating AdaGrad (Duchi, Hazan, Singer 2011):
Often have high-dimensional feature spaces

— Many features are irrelevant

— Rare features are often very informative

Adagrad provides a feature-specific adaptive learning rate by incorporating
knowledge of the geometry of past observations

Why Adapt to Geometry?

Lt.3

(\V)

e —— 11]-5

Examples from
Duchi et al.
ISMP 2012

slides

o|—xooon—\oo;§
OO OO0 O

0
D
-1 1
-1
-.5

® Frequent, irrelevant

® Infrequent, predictive
(3)

©Sham Kakade 2017 9

Not All Features are Created Equal

 Examples:

High-dimensional image features
Text data:

The most unsung birthday
in American business and
technological history
this year may be the 50th
anniversary of the Xerox
914 photocopier.?

?The Atlantic, July/August 2010.

Images from Duchi et al. ISMP 2012 slides

©Sham Kakade 2017 10

Visualizing Effect

- SGD
- SGD
= Momentum Momentum
- NAG
— ~—— NAG
i —— Adagrad = —— Adagrad
7/ &
; p ';o',’,"l'z'{,'l",’,’ll;f Adadelta Adadelta
I
- "QW Rmsprop Rmsprop
s 0 Y
%

:" 200
<0 %09
'q"oq}:,’::"'&
22004 %,
000, %)
o,:,::,:,'o,:o'tlt

1.0

" _1s . - SGD
- Momentum
- NAG
— Adagrad
Adadelta

Rmsprop

o

!‘,' 7

ity
gt
|

=

Credit:
http://imgur.com/a/Hqolp

G
Y
"l""l'""l'
F l',"l. {0

47
[
o

©Sham Kakade 2017 11

Regret Minimization

How do we assess the performance of an online algorithm?

Algorithm iteratively predicts w(t)
Incur loss ét(w(t))

Regret:.
What is the total incurred loss of algorithm relative to the best choice
of W that could have been made retrospectively

wEe WY

R(T) =) Ly(w")— inf > f(w)

Regret Bounds for Standard SGD

e Standard projected gradient stochastic updates:

wttD) — argvrvré% w — (W' —ng,)|[3

e Standard regret bound:

T
th) = l(w*) < W — w3+ Z!gtH%

1
2n

Projected Gradient using Mahalanobis

e Standard projected gradient stochastic updates:

wtth — arg vIvrélir/lv w — (W — g3

* What if instead of an L, metric for projection, we considered the
Mahalanobis norm

w1 = arg min |lw — (w(—nA™1g,)|

Mahalanobis Regret Bounds

wittl) — arg min ||w — (W(t) — nA_lgt)||?4

weVY
e What A to choose?

. Regret bound now:

th (%)) — L (w") <

| 3

T
W) —w |3 + Z\gtHi—l

1
21

 What if we minimize upper bound on regret w.r.t. A in hindsight?

T
: T £—1
A
Hﬁn 5_1: g¢ g+

Mahalanobis Regret Minimization

* Objective:

T
: T -1 :
§ A - <
min 2 g; o subject to A > 0,tr(A) < C

e Solution:

T
A=c|) qgl
t=1

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

N~

* A defines the norm of the metric space we should be operating in

AdaGrad Algorithm

« Attimet, estimate optimal (sub)gradient modification A by

t
At — (Z gTQZ)
T=1

* Fordlarge, A, is computationally intensive to compute. Instead,

2

 Then, algorithm is a simple modification of normal updates:

(t+1) ' — (W — pdi “lgnllg
w1 = arg min |lw — (w'*) — ndiag(A1) ™ 90) 3100 4,

AdaGrad in Euclidean Space
For W = R¢Y,

For each feature dimension,

wi =y =gy

where

Nt.i —

That is,)
WD o)

U
1 1 ¢ 5 gt,’L
\/2721 gT,i

Each feature dimension has it’s own learning rate!
— Adapts with t

— Takes geometry of the past observations into account

— Primary role of n is determining rate the first time a feature is encountered

 AdaGrad regret bound:

AdaGrad Theoretical Guarantees

Roo := max ||[w() — w*||o

o~ d

T
th(w(t)) — U (w™) < 2R Z g1.7.4|2
t=1

1=1

— In stochastic setting:

T .
1
= () . _OO
K E(Ttglw)) < E E||91TJ||

* This really is used in practice!

* Many cool examples. Let’s just examine one...

AdaGrad Theoretical Example

Expect to out-perform when gradient vectors are sparse

SVM hinge loss example:

b(w) = [1 —y" (x",w)]4

x' € {~1,0,1}¢
If x;f # 0 with probability o< j~%, a>1

T
1 [W*]| -
E [/ = w® || —o(w* :(9< . max{log d, d* /2 >
(7] - =0 (7 e }
. I ¢ : Wl
sort of) previously bound: E /| = w(t)>]—€(w):(9(-\/&>
(sort of) previously (3 gl

©Sham Kakade 2017 20

Neural Network Learning

* Very non-convex problem, but use SGD methods anyway

t(w, x) = log(1 + exp(([p({w1, 1)) - - -Tp(<wk, k)], 0)))
1

1 + exp(a

2. " ddd
i ngEESE; ggg w/Adagrad @ @

Sandblgster L—BEGS T T T T T

0 2‘0 4‘0 6‘0 80 100 120
Time (hours) L1 X2 X3 T4 T

(Dean et al. 2012)

Distributed, d = 1.7 - 10° parameters. SGD and AdaGrad use 80 Images from Duchi et

machines (1000 cores), L-BFGS uses 800 (10000 cores) al. ISMP 2012 slides
©Sham Kakade 2017 21

Accuracy on Test Set D (a)

N
o

n
o
T

_
a
T

_
o
T

Average Frame Accuracy (%)

a
T

o

A DA M Adam update rule consists of the following steps

Compute gradient g; at current time ¢
Update biased first moment estimate

e Like AdaGrad but
with “forgetting” m; = Byme_y + (1= B1)g;

 The algo has
component-wise
updates Ve = Paveet + (1-Po)gt

Update biased second raw moment estimate

e Compute bias-corrected first moment estimate

2l
g o= 1_ﬂi
e Compute bias-corrected second raw moment estimate
e
Vs = i ﬂ%
e Update parameters
0, =0,1-a——"

Comparisons: MNIST, Sigmoid 100 layer

test set accuracy

0.971
0.970

0.969 Color

® momentum [0.125]
W adam [0.001]

W adadelta [0.9]

W adagrad [0.075]

“sgd [0.5]
0.968

0.967

0.966 -

momentum [0, 125] adam [0.001] @ﬁgMKQJde 201 7dagrad [0.075] sad [0.5]

method name

test set accuracy

comparisons: MNIST, Tanh 100 layer

0.966

Color

™ momentum [0.125]
" adam [0.001]
0.964 W adadelta [0.95]
W adagrad [0.05]
sad [1.0]
0.962 .
0.960 . e

momentum [0.125] adam [0.001] adadelta [0.95] adagrad [0.05] sad [1.0]

Behod DAME 2017

Comparisons: Sigmoid, RelLu, Sigmoid

test set accuracy

0.982

0.980
Color
® momentum [0.2]
¥ adam [0.002]

0.978 W adadelta [0.975]
W adagrad [0.05]
“ sad [1.0]

0.976

0.974 -

momentum [0.2] adam [0.002] adadelta [0.975] adagrad [0.05] sad [1.0]

ofnsthed nams, 7

Acknolwedgments

* Some figs taken from: http://int8.io/comparison-of-
optimization-techniques-stochastic-gradient-descent-
momentum-adagrad-and-adadelta/

