Case Study 1: Estimating Click Probabilities

Adaptive Gradient Methods AdaGrad / Adam

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

The Problem with GD (and SGD)

Adaptive Gradient Methods: Convex Case

- What we want?
- Newton's method:

$$w \leftarrow w - [\nabla^2 L(w)]^{-1} \nabla L(w)$$

- Why is this a good idea?
 - Guarantees?
 - Stepsize?
- Related ideas:
 - Conjugate Gradient/Acceleration:
 - L-BFGS
 - Quasi-Newton methods

Adaptive Gradient Methods: Non-Cvx Case

- What do we want?
 - Hessian may not be PSD, so is Newton's method a descent method?
- Other ideas:
 - Natural Gradient methods:
 - Curvature adaptive:
 - Adagrad, AdaDelta, RMS prop, ADAM, I-BFGS, heavy ball gradient, momentum
 - Noise injection:
 - Simulated annealing, dropout, Langevin methods
- Caveats:
 - Batch methods may be poor: "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima"

Natural Gradient Idea

Probabilistic models and maximum likelihood estimation:

$$\widehat{L}(w) = -\log Pr(\text{data}|w)$$

True likelihood function:

$$L(w) = -E_{z \sim D} \log Pr(z|w)$$

where z is sampled form the underling data distribution D.

- Suppose the model is correct, i.e. $z \sim \Pr(z|w^*)$ for some w^*
 - Let's look at the Hessian at w*

$$\nabla^2 L(w^*) = \mathbb{E}_{z \sim \Pr(z|w^*)} [-\nabla^2 \log \Pr(z|w^*)]$$
$$= \mathbb{E}_{z \sim \Pr(z|w^*)} [\nabla \log \Pr(z|w^*) (\nabla \log \Pr(z|w^*))^\top]$$

How do we approximate the Hessian at w?

Fisher Information Matrix

Define the Fisher matrix:

$$F(w) := \mathbb{E}_{z \sim \Pr(z|w)} [\nabla \log \Pr(z|w) (\nabla \log \Pr(z|w))^{\top}]$$

- If the model is correct and if $w \to w^*$, then $F(w) \to F(w^*)$
- Natural Gradient: Use the update rule:

$$w \leftarrow w - [F(w)]^{-1} \nabla L(w)$$

Empirically, use L[^](w) and

$$\hat{F}(w) := \frac{1}{t} \sum_{t} g_t(w) g_t(w)^{\top}$$

where g_t(w) is the gradient of the t-th data point

Curvature approximation:

One idea:

$$\nabla^2 \hat{L}(w) \stackrel{?}{\approx} \frac{1}{t} \sum_t g_t(w) g_t(w)^{\top}$$

where g_t(w) is the gradient of the t-th data point

- Many ideas try to use this approximation
 - Quasi-Newton methods, Gauss newton methods
 - Ellipsoid method (sort of)

Motivating AdaGrad (Duchi, Hazan, Singer 2011)

• Assuming $\mathbf{w} \in \mathbb{R}^d$, standard stochastic (sub)gradient descent updates are of the form:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_t g_{t,i}$$

Should all features share the same learning rate?

- Motivating AdaGrad (Duchi, Hazan, Singer 2011):
 Often have high-dimensional feature spaces
 - Many features are irrelevant
 - Rare features are often very informative
- Adagrad provides a feature-specific adaptive learning rate by incorporating knowledge of the geometry of past observations

Why Adapt to Geometry?

Hard

y_t	$x_{t,1}$	$x_{t,2}$	$\cancel{x}_{t,3}$
1	1	0	0
-1	.5	0	1
1	5	1	0
-1	0	0	0
1	.5	0	0
-1	1	0	0
1	-1	1	0
-1	5	0	1

Examples from Duchi et al. ISMP 2012 slides

- Frequent, irrelevant
- 2 Infrequent, predictive
- 3 Infrequent, predictive

©Sham Kakade 2017

Not All Features are Created Equal

Examples:

Text data:

The most unsung birthday in American business and technological history this year may be the 50th anniversary of the Xerox 914 photocopier.

High-dimensional image features

Images from Duchi et al. ISMP 2012 slides

^aThe Atlantic, July/August 2010.

Visualizing Effect

Credit:

http://imgur.com/a/Hqolp

Regret Minimization

- How do we assess the performance of an online algorithm?
- Algorithm iteratively predicts $\mathbf{w}^{(t)}$
- Incur **loss** $\ell_t(\mathbf{w}^{(t)})$
- Regret:

What is the total incurred loss of algorithm relative to the best choice of \mathbf{W} that could have been made *retrospectively*

$$R(T) = \sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \inf_{\mathbf{w} \in \mathcal{W}} \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

Regret Bounds for Standard SGD

Standard projected gradient stochastic updates:

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta g_t)||_2^2$$

Standard regret bound:

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \ell_t(\mathbf{w}^*) \le \frac{1}{2\eta} ||\mathbf{w}^{(1)} - \mathbf{w}^*||_2^2 + \frac{\eta}{2} \sum_{t=1}^{T} ||g_t||_2^2$$

Projected Gradient using Mahalanobis

Standard projected gradient stochastic updates:

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta g_t)||_2^2$$

 What if instead of an L₂ metric for projection, we considered the Mahalanobis norm

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta A^{-1} g_t)||_A^2$$

Mahalanobis Regret Bounds

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta A^{-1} g_t)||_A^2$$

- What A to choose?
- Regret bound now:

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \ell_t(\mathbf{w}^*) \le \frac{1}{2\eta} ||\mathbf{w}^{(1)} - \mathbf{w}^*||_2^2 + \frac{\eta}{2} \sum_{t=1}^{T} ||g_t||_{A^{-1}}^2$$

• What if we minimize upper bound on regret w.r.t. A in hindsight?

$$\min_{A} \sum_{t=1}^{T} g_t^T A^{-1} g_t$$

Mahalanobis Regret Minimization

Objective:

$$\min_{A} \sum_{t=1}^{T} g_t^T A^{-1} g_t \qquad \text{subject to } A \succeq 0, \text{tr}(A) \leq C$$

Solution:

$$A = c \left(\sum_{t=1}^{T} g_t g_t^T \right)^{\frac{1}{2}}$$

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011. Uses "trace trick" and Lagrangian.

A defines the norm of the metric space we should be operating in

AdaGrad Algorithm

At time t, estimate optimal (sub)gradient modification A by

$$A_t = \left(\sum_{\tau=1}^t g_{\tau} g_{\tau}^T\right)^{\frac{1}{2}}$$

• For d large, A_t is computationally intensive to compute. Instead,

Then, algorithm is a simple modification of normal updates:

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta \operatorname{diag}(A_t)^{-1} g_t)||_{\operatorname{diag}(A_t)}^2$$

AdaGrad in Euclidean Space

- For $\mathcal{W} = \mathbb{R}^d$,
- For each feature dimension,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_{t,i} g_{t,i}$$

where

$$\eta_{t,i} =$$

That is,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \frac{\eta}{\sqrt{\sum_{\tau=1}^t g_{\tau,i}^2}} g_{t,i}$$

- Each feature dimension has it's own learning rate!
 - Adapts with t
 - Takes geometry of the past observations into account
 - Primary role of η is determining rate the first time a feature is encountered

AdaGrad Theoretical Guarantees

AdaGrad regret bound:

Grad regret bound:
$$R_{\infty} := \max_{t} ||\mathbf{w}^{(t)} - \mathbf{w}^*||_{\infty}$$

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \ell_t(\mathbf{w}^*) \leq 2R_{\infty} \sum_{i=1}^{d} ||g_{1:T,i}||_2$$

– In stochastic setting:

$$\mathbb{E}\left[\ell\left(\frac{1}{T}\sum_{t=1}^{T}w^{(t)}\right)\right] - \ell(\mathbf{w}^*) \le \frac{2R_{\infty}}{T}\sum_{i=1}^{d}\mathbb{E}[||g_{1:T,j}||_2]$$

- This really is used in practice!
- Many cool examples. Let's just examine one...

AdaGrad Theoretical Example

- Expect to out-perform when gradient vectors are sparse
- SVM hinge loss example:

$$\ell_t(\mathbf{w}) = [1 - y^t \langle \mathbf{x}^t, \mathbf{w} \rangle]_+$$
$$\mathbf{x}^t \in \{-1, 0, 1\}^d$$

• If $x_i^t \neq 0$ with probability $\propto j^{-\alpha}$, $\alpha > 1$

$$\mathbb{E}\left[\ell\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}^{(t)}\right)\right] - \ell(\mathbf{w}^*) = \mathcal{O}\left(\frac{||\mathbf{w}^*||_{\infty}}{\sqrt{T}} \cdot \max\{\log d, d^{1-\alpha/2}\}\right)$$

(sort of) previously bound:

$$\mathbb{E}\left[\ell\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}^{(t)}\right)\right] - \ell(\mathbf{w}^*) = \mathcal{O}\left(\frac{||\mathbf{w}^*||_{\infty}}{\sqrt{T}}\cdot\sqrt{d}\right)$$

Neural Network Learning

Very non-convex problem, but use SGD methods anyway

$$\ell(w,x) = \log(1 + \exp(\langle [p(\langle w_1, x_1 \rangle) \cdots p(\langle w_k, x_k \rangle)], x_0 \rangle))$$

 $p(\alpha) = \frac{1}{1 + \exp(\alpha)}$ $p(\langle w_1, x_1 \rangle)$ x_3 x_2 x_4

(Dean et al. 2012)

Distributed, $d = 1.7 \cdot 10^9$ parameters. SGD and AdaGrad use 80 machines (1000 cores), L-BFGS uses 800 (10000 cores)

Images from Duchi et al. ISMP 2012 slides

ADAM

- Like AdaGrad but with "forgetting"
- The algo has component-wise updates

Adam update rule consists of the following steps

- Compute gradient g_t at current time t
- Update biased first moment estimate

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

Update biased second raw moment estimate

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Compute bias-corrected first moment estimate

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

Compute bias-corrected second raw moment estimate

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

• Update parameters

$$\theta_t = \theta_{t-1} - \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

Comparisons: MNIST, Sigmoid 100 layer

Comparisons: MNIST, Tanh 100 layer 0.966 Color momentum [0.125] adam [0.001] 0.964 adadelta [0.95] adagrad [0.05] sqd [1.0] 0.962

test set accuracy

0.960

momentum [0.125]

adam [0.001]

method name Sham Kakade 2017

adagrad [0.05]

sgd [1.0]

adadelta [0.95]

Comparisons: Sigmoid, ReLu, Sigmoid

Acknolwedgments

 Some figs taken from: http://int8.io/comparison-ofoptimization-techniques-stochastic-gradient-descentmomentum-adagrad-and-adadelta/