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Case Study 1: Estimating Click Probabilities



Ad Placement Strategies

• Companies bid on ad prices

• Which ad wins? (many simplifications here)

– Naively: 

– But:

– Instead:
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Key Task: Estimating Click Probabilities

• What is the probability that user i will click on ad j

• Not important just for ads:
– Optimize search results
– Suggest news articles
– Recommend products

• Methods much more general, useful for:
– Classification
– Regression 
– Density estimation
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Learning Problem for Click Prediction

• Prediction task:

• Features:

• Data:

– Batch:

– Online:

• Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, 
boosting,…)
– Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Logistic Regression
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Logistic

function

(or Sigmoid):

 Learn P(Y|X) directly

 Assume a particular functional form

 Sigmoid applied to a linear function 
of the data:

Z

Features can be discrete or continuous!



Very convenient!
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implies

linear 
classification 

rule!
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Digression: Logistic regression more 
generally

• Logistic regression in more general case, where 
Y in {y1,…,yR}

for k<R

for k=R (normalization, so no weights for this class)

Features can be discrete or continuous!
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Loss function: Conditional Likelihood

• Have a bunch of iid data of the form:

• Discriminative (logistic regression) loss function:

Conditional Data Likelihood
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Expressing Conditional Log Likelihood
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Maximizing Conditional Log Likelihood
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Good news: l(w) is concave function of w, 

no local optima problems

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize



Optimizing concave function –
Gradient ascent 

• Conditional likelihood for logistic regression is concave

• Find optimum with gradient ascent

• Gradient ascent is simplest of optimization approaches

– e.g., Conjugate gradient ascent much better (see reading)
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Gradient:

Step size, >0

Update rule:



Gradient Ascent for LR
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Gradient ascent algorithm: iterate until change < 

For i = 1,…,d, 

repeat   

(t)

(t)



Regularized Conditional Log Likelihood

• If data are linearly separable, weights go to infinity

• Leads to overfitting Penalize large weights

• Add regularization penalty, e.g., L2:

• Practical note about w0:
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Standard v. Regularized Updates

• Maximum conditional likelihood estimate

• Regularized maximum conditional likelihood estimate
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Stopping criterion

• Regularized logistic regression is strongly concave
– Negative second derivative bounded away from zero:

• Strong concavity (convexity) is super helpful!!

• For example, for strongly concave l(w):
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Convergence rates for gradient 
descent/ascent

• Number of iterations to get to accuracy

• If func l(w) Lipschitz: O(1/ϵ2)

• If gradient of func Lipschitz: O(1/ϵ)

• If func is strongly convex: O(ln(1/ϵ))
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Challenge 1: Complexity of computing 
gradients

• What’s the cost of a gradient update step for LR???
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Challenge 2: Data is streaming

• Assumption thus far: Batch data

• But, click prediction is a streaming data task:
– User enters query, and ad must be selected:

• Observe xj, and must predict yj

– User either clicks or doesn’t click on ad:

• Label yj is revealed afterwards

– Google gets a reward if user clicks on ad

– Weights must be updated for next time:
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Learning Problems as Expectations

• Minimizing loss in training data:

– Given dataset:
• Sampled iid from some distribution p(x) on features:

– Loss function, e.g., hinge loss, logistic loss,…

– We often minimize loss in training data:

• However, we should really minimize expected loss on all data:

• So, we are approximating the integral by the average on the training data
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Gradient Ascent in Terms of Expectations

• “True” objective function:

• Taking the gradient:

• “True” gradient ascent rule:

• How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)

• “True” gradient:

• Sample based approximation:

• What if we estimate gradient with just one sample???

– Unbiased estimate of gradient

– Very noisy!

– Called stochastic gradient ascent (or descent)

• Among many other names

– VERY useful in practice!!!
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Stochastic Gradient Ascent: General Case

• Given a stochastic function of parameters:
– Want to find maximum

• Start from w(0)

• Repeat until convergence:
– Get a sample data point xt

– Update parameters:

• Works in the online learning setting!

• Complexity of each gradient step is constant in number of examples!

• In general, step size changes with iterations
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Stochastic Gradient Ascent for Logistic 
Regression

• Logistic loss as a stochastic function:

• Batch gradient ascent updates:

• Stochastic gradient ascent updates:
– Online setting:
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Convergence Rate of SGD

• Theorem: 
– (see Nemirovski et al ‘09 from readings)

– Let f be a strongly convex stochastic function

– Assume gradient of f is Lipschitz continuous and bounded

– Then, for step sizes:

– The expected loss decreases as O(1/t):
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Convergence Rates for 
Gradient Descent/Ascent vs. SGD

• Number of Iterations to get to accuracy

• Gradient descent:

– If func is strongly convex: O(ln(1/ϵ)) iterations

• Stochastic gradient descent:

– If func is strongly convex: O(1/ϵ) iterations

• Seems exponentially worse, but much more subtle:

– Total running time, e.g., for logistic regression:

• Gradient descent:

• SGD:

• SGD can win when we have a lot of data

– See readings for more details
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What you should know about 
Logistic Regression (LR) and Click Prediction

• Click prediction problem:
– Estimate probability of clicking

– Can be modeled as logistic regression

• Logistic regression model: Linear model

• Gradient ascent to optimize conditional likelihood

• Overfitting + regularization

• Regularized optimization
– Convergence rates and stopping criterion

• Stochastic gradient ascent for large/streaming data
– Convergence rates of SGD
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