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Ad Placement Strategies

Companies bid on ad prices

WhiCh ad W|nS? (many simplifications here)

— Naively:
— But:

— Instead:

GO~ /8]@ big data
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Key Task: Estimating Click Probabilities

 What is the probability that user i will click on ad

* Not important just for ads:
— Optimize search results
— Suggest news articles
— Recommend products

 Methods much more general, useful for:
— Classification
— Regression
— Density estimation



Learning Problem for Click Prediction

Prediction task:

* Features:
* Data:
— Batch:
— Online:

 Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision trees,
boosting,...)

— Focus on logistic regression; captures main concepts, ideas generalize to other approaches



Logistic Regression

Learn P(Y|X) directly

1 Assume a particular functional form Logistic

1 Sigmoid applied to a linear function function
of the data:

1

(or Sigmoid): 1 T ezp(~2)
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Features can be discrete or continuous!



Very convenient!
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Digression: Logistic regression more
generally

* Logistic regression in more general case, where
Yin{y,.., Vel

for k<R

ex A - X

1+ 3557 exp(wjo + Xy wjiXy)

for k=R (normalization, so no weights for this class)
1

P(Y = yg|X) = -
1+ Zijll exp(w;o + 271 wji X;)

Features can be discrete or continuous!



Loss function: Conditional Likelihood

e Have a bunch of iid data of the form:

* Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N
In P(Dy | Dx,w) = > InP(y | x/,w)
~

J



Expressing Conditional Log Likelihood

1

o POr= 0w = 1+ exp(wo + X2 wiX;)
I(w)=> InP(y/|x7, w)

J P(Y = 1‘X, w) = exp(wg + D w; X;)

1 + exp(wg + >; w; X;)
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Maximizing Conditional Log Likelihood

I(w) = In H P(y’|x7, w)

J
d d
- Z y? (wo + Z wzazf) —In (1 + exp(wp + Z wwi))
j i=1

1=1

Good news: [(w) is concave function of w,
no local optima problems

Bad news: no closed-form solution to maximize |(w)

Good news: concave functions easy to optimize



Optimizing concave function —
Gradient ascent

* Conditional likelihood for logistic regression is concave
* Find optimum with gradient ascent

ol(w) Ol(w)

w0 - awn

Update rule: Aw = nVwl(w)

’w.(t_l_l) «— w(t) _|_ UM
) ) awz

]/

. " Gradient: Vwl(w) =|

 Gradient ascent is simplest of optimization approaches
— e.g., Conjugate gradient ascent much better (see reading)
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Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ¢

wi = w4 n Yl - PO =1 |, W]
J

Fori=1,..,d,

wz-(t_i_l) — wi(t) + nZazg[yj — Py’ =1 Xj,“%]
J

repeat




Regularized Conditional Log Likelihood

* If data are linearly separable, weights go to infinity
* Leads to overfitting = Penalize large weights

* Add regularization penalty, e.g., L,:

(w)=In ][ P(/|x7,w)) = N|wl[3
J 2

* Practical note about wy;:



Standard v. Regularized Updates

e Maximum conditional likelihood estimate

N
* __ J | xJ
w™ = argmaxin Ll:[lP(y |X,w)]

wi(t+1) - wi(t) 4 an{[yj —P(YI =1 | xIgw)]
J

* Regularized maximum conditional likelihood estimate

W

w' = arg max In HP(yj|Xj,w))
J

—A) W

2 i>0

wi(t_l_l) — wi(t)—l—n {)\wi(t) + z:mg[yt7 — Pyl =1 | Xj,V\(;))]}
J




Stopping criterion

(w)=In] | PO/ Ix,w)) — Allwl|3
j 2

 Regularized logistic regression is strongly concave

— Negative second derivative bounded away from zero:

e Strong concavity (convexity) is super helpful!!
* For example, for strongly concave /(w):

* 1 2
w) — Uw) < || VE(w)|



Convergence rates for gradient
descent/ascent

 Number of iterations to get to accuracy

l(w") —b(w) <e

* |f func I(w) Lipschitz: O(1/€?)

 |f gradient of func Lipschitz: O(1/€)

* |f funcis strongly convex: O(In(1/¢€))



Challenge 1: Complexity of computing
gradients

 What’s the cost of a gradient update step for LR???

WD O 4y {/\wgw +S 2l — P(yi =1 Xj,véﬁ))]}
j




Challenge 2: Data is streaming

* Assumption thus far: Batch data

* But, click prediction is a streaming data task:

— User enters query, and ad must be selected:
* Observe x, and must predict y/

— User either clicks or doesn’t click on ad:
* Label yi is revealed afterwards

— Google gets a reward if user clicks on ad

— Weights must be updated for next time:



Learning Problems as Expectations

 Minimizing loss in training data:
— Given dataset:

« Sampled iid from some distribution p(x) on features:
— Loss function, e.g., hinge loss, logistic loss,...
— We often minimize loss in training data:

{p(w) = % Zﬁ(w, x’)

 However, we should really minimize expected loss on all data:

l(w) = FEx [l(w,x)| = /p(X)Z(W,X)dX

* So, we are approximating the integral by the average on the training data



Gradient Ascent in Terms of Expectations

 “True” objective function:
0(w) = Ex [t(w,)] = [ p(x)¢(w. x)dx
* Taking the gradient:

 “True” gradient ascent rule:

* How do we estimate expected gradient?



SGD: Stochastic Gradient Ascent (or Descent)
* “True” gradient: Vﬁ(w) = b [VK(W, X)]

 Sample based approximation:

 What if we estimate gradient with just one sample???
— Unbiased estimate of gradient
— Very noisy!
— Called stochastic gradient ascent (or descent)
* Among many other names

— VERY useful in practice!!!



Stochastic Gradient Ascent: General Case

Given a stochastic function of parameters:
— Want to find maximum

e Start from w(©

* Repeat until convergence:
— Get a sample data point xt

— Update parameters:

 Works in the online learning setting!
 Complexity of each gradient step is constant in number of examples!
* In general, step size changes with iterations



Stochastic Gradient Ascent for Logistic
Regression

* Logistic loss as a stochastic function:
Ex [f(w,x)] = Ex [In P(y|x, w) — ||w]|3]
2

* Batch gradient ascent updates:

N
1 N .
w ™ w4 {Awﬁ“ F o S aP D - Py = 1x, w“m}

g=1

e Stochastic gradient ascent updates:
— Online setting:

(t+ ) w(t) +n, {_)\wgt) n x@(t) y® — P(Y = HX(t)’W(t))]}




Convergence Rate of SGD

* Theorem:
— (see Nemirovski et al ‘09 from readings)
— Let f be a strongly convex stochastic function
— Assume gradient of f is Lipschitz continuous and bounded

— Then, for step sizes:

— The expected loss decreases as O(1/t):



Convergence Rates for
Gradient Descent/Ascent vs. SGD

Number of Iterations to get to accuracy
l(w") —b(w) < ¢

Gradient descent:
— If func is strongly convex: O(In(1/€)) iterations

Stochastic gradient descent:
— If func is strongly convex: O(1/¢) iterations

Seems exponentially worse, but much more subtle:
— Total running time, e.g., for logistic regression:

e Gradient descent:

e SGD:

e SGD can win when we have a lot of data

— See readings for more details



What you should know about
Logistic Regression (LR) and Click Prediction

* Click prediction problem:

— Estimate probability of clicking
— Can be modeled as logistic regression

e Logistic regression model: Linear model
e Gradient ascent to optimize conditional likelihood
e QOverfitting + regularization

* Regularized optimization

— Convergence rates and stopping criterion

» Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD
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