
4/7/2016

1

©Sham Kakade 2016 1

Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of
Features with Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade

April 7th, 2015

Problem 1: Complexity of LR Updates

• Logistic regression update:

• Complexity of updates:
– Constant in number of data points

– In number of features?
• Problem both in terms of computational complexity and sample complexity

• What can we do with very high dimensional feature spaces?
– Kernels not always appropriate, or scalable

– What else?

©Sham Kakade 2016 2

4/7/2016

2

What Next?

• Hashing & Sketching!

– Addresses both dimensionality issues and new features in one approach!

• Let’s start with a much simpler problem: Is a string in our vocabulary?
– Membership query

• How do we keep track?
– Explicit list of strings

• Very slow

– Fancy Trees and Tries
• Hard to implement and maintain

– Hash tables?

©Sham Kakade 2016 3

Problem 2: Unknown Number of Features

• For example, bag-of-words features for text data:
– “Mary had a little lamb, little lamb…”

• What’s the dimensionality of x?

• What if we see new word that was not in our vocabulary?
– Obamacare

– Theoretically, just keep going in your learning, and initialize wObamacare = 0

– In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

©Sham Kakade 2016 4

4/7/2016

3

• Keep p by m Count matrix

• p hash functions:

– Just like in Bloom Filter, decrease errors with multiple hashes

– Every time see string i:

©Sham Kakade 2016 5

Count-Min Sketch: general case

Querying the Count-Min Sketch

• Query Q(i)?
– What is in Count[j,k]?

– Thus:

– Return:

©Sham Kakade 2016 6

4/7/2016

4

Analysis of Count-Min Sketch

• Set:

• Then, after seeing n elements:

• With probability at least 1-δ

©Sham Kakade 2016 7

Proof of Count-Min for Point Query with
Positive Counts: Part 1 – Expected Bound

• Ii,j,k = indicator that i & k collide on hash j:

• Bounding expected value:

• Xi,j = total colliding mass on estimate of count of i in hash j:

• Bounding colliding mass:

• Thus, estimate from each hash function is close in expectation

©Sham Kakade 2016 8

4/7/2016

5

• What we know:

• Markov inequality: For z1,…,zk positive iid random variables

• Applying to the Count-Min sketch:

©Sham Kakade 2016 9

Proof of Count-Min for Point Query with
Positive Counts: Part 2 – High Probability Bounds

But updates may be positive or negative

• Count-Min sketch for positive & negative case
– ai no longer necessarily positive

• Update the same: Observe change Δi to element i:

– Each Count[j,h(i)] no longer an upper bound on ai

• How do we make a prediction?

• Bound:
– With probability at least 1-δ1/4, where ||a|| = Σi |ai|

©Sham Kakade 2016 10

4/7/2016

6

Finally, Sketching for LR

• Never need to know size of vocabulary!

• At every iteration, update Count-Min matrix:

• Making a prediction:

• Scales to huge problems, great practical implications…
©Sham Kakade 2016 11

Hash Kernels

• Count-Min sketch not designed for negative updates

• Biased estimates of dot products

• Hash Kernels: Very simple, but powerful idea to remove bias

• Pick 2 hash functions:

– h : Just like in Count-Min hashing

– ξ : Sign hash function
• Removes the bias found in Count-Min hashing (see homework)

• Define a “kernel”, a projection ϕ for x:

©Sham Kakade 2016 12

4/7/2016

7

Hash Kernels Preserve Dot Products

• Hash kernels provide unbiased estimate of dot-products!

• Variance decreases as O(1/m)

• Choosing m? For ε>0, if

– Under certain conditions…

– Then, with probability at least 1-δ:

©Sham Kakade 2016 13

Learning With Hash Kernels

• Given hash kernel of dimension m, specified by h and ξ

– Learn m dimensional weight vector

• Observe data point x

– Dimension does not need to be specified a priori!

• Compute ϕ(x):

– Initialize ϕ(x)

– For non-zero entries j of xj:

• Use normal update as if observation were ϕ(x), e.g., for LR using SGD:

©Sham Kakade 2016 14

4/7/2016

8

Interesting Application of Hash Kernels:
Multi-Task Learning

• Personalized click estimation for many users:

– One global click prediction vector w:

• But…

– A click prediction vector wu per user u:

• But…

• Multi-task learning: Simultaneously solve multiple learning related problems:

– Use information from one learning problem to inform the others

• In our simple example, learn both a global w and one wu per user:
– Prediction for user u:

– If we know little about user u:

– After a lot of data from user u:

©Sham Kakade 2016 15

Problems with Simple
Multi-Task Learning

• Dealing with new user is annoying, just like dealing with new
words in vocabulary

• Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger et al.:
– 3.2M emails

– 40M unique tokens in vocabulary

– 430K users

– 16T parameters needed for personalized classification!

©Sham Kakade 2016 16

4/7/2016

9

Hash Kernels for Multi-Task Learning

• Simple, pretty solution with hash kernels:

– Very multi-task learning as (sparse) learning problem with (huge) joint data point z
for point x and user u:

• Estimating click probability as desired:

• Address huge dimensionality, new words, and new users using hash kernels:

©Sham Kakade 2016 17

Simple Trick for Forming Projection ϕ(x,u)

• Observe data point x for user u
– Dimension does not need to be specified a priori and user can be new!

• Compute ϕ(x,u):
– Initialize ϕ(x,u)

– For non-zero entries j of xj:

• E.g., j=‘Obamacare’

• Need two contributions to ϕ:
– Global contribution

– Personalized Contribution

• Simply:

• Learn as usual using ϕ(x,u) instead of ϕ(x) in update function
©Sham Kakade 2016 18

4/7/2016

10

Results from Weinberger et al. on
Spam Classification: Effect of m

©Sham Kakade 2016 19

Results from Weinberger et al. on
Spam Classification: Multi-Task Effect

©Sham Kakade 2016 20

4/7/2016

11

What you need to know

• Hash functions

• Bloom filter
– Test membership with some false positives, but very small number of bits per element

• Count-Min sketch
– Positive counts: upper bound with nice rates of convergence

– General case

• Application to logistic regression

• Hash kernels:
– Sparse representation for feature vectors

– Very simple, use two hash function (Can use one hash function…take least significant bit to define ξ)

– Quickly generate projection ϕ(x)

– Learn in projected space

• Multi-task learning:
– Solve many related learning problems simultaneously

– Very easy to implement with hash kernels

– Significantly improve accuracy in some problems (if there is enough data from individual users)

©Sham Kakade 2016 21

