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Support/Resources

e Office Hours
—Yao Lu: Tue 1:30-2:30, CSE 220
—John Thickstun: Weds 4-5, CSE 220




Learning Problem for Click Prediction
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Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision trees, \
boosting,...) < /‘f

— Focus on logistic regression; captures main concepts, ideas generalize to other approaches




Challenge 1: Complexity of computing
gradients

* What’s the cost of a gradient update step for@%?é‘f’% >
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Challenge 2: Data is streaming

* Assumption thus far: Batch data

* But, click prediction is a streaming data task:

— User enters query, and ad must be selected: sho o o A

* Observe x, and must predict y/ ¢ 2
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—) = — Y — % A~ o
Yo N/
— User either clicks or doesn’t click on ad: 7\
* Label y/ is revealed afterwards \/

— Google gets a reward if user clicks on ad

— Weights must be updated for next time:




SGD: Stochastic Gradient Ascent (or Descent)
* “True” gradient: Vﬁ(w) = b [V{(vv7 X)]

 Sample based approximation:
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 What if we estimate gradient with just one sample???
— Unbiased estimate of gradient
— Very noisy!
— Called stochastic gradient ascent (or descent)

* Among many other names

— VERY useful in practice!!!




Stochastic Gradient Ascent: General Case

Given a stochastic function of parameters:
— Want to find maximum

e Start from w(©

* Repeat until convergence:
— Get a sample data point xt

— Update parameters:

 Works in the online learning setting!
 Complexity of each gradient step is constant in number of examples!
* In general, step size changes with iterations




Stochastic Gradient Ascent for Logistic
Regression

* Logistic loss as a stochastic function:
Ex [f(w,x)] = Ex [In P(y|x, w) — ||w]|3]
2

* Batch gradient ascent updates:
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e Stochastic gradient ascent updates:
— Online setting:

(t+ ) w(t) +n, {_)\wgt) n x@(t) y® — P(Y = HX(t)’W(t))]}




Convergence Rate of SGD

* Theorem:
— (see Nemirovski et al ‘09 from readings)
— Let f be a strongly convex stochastic function
— Assume gradient of f is Lipschitz continuous and bounded

— Then, for step sizes:

— The expected loss decreases as O(1/t):




Convergence Rates for
Gradient Descent/Ascent vs. SGD

Number of Iterations to get to accuracy
l(w") —b(w) < ¢

Gradient descent:
— If func is strongly convex: O(In(1/€)) iterations

Stochastic gradient descent:
— If func is strongly convex: O(1/¢) iterations

Seems exponentially worse, but much more subtle:
— Total running time, e.g., for logistic regression:

e Gradient descent:

e SGD:

e SGD can win when we have a lot of data

— See readings for more details




Constrained SGD: Projected Gradient

« Consider an arbitrary restricted feature space w & )V

* Optimization objective:

« If W € )V, can use projected gradient for (sub)gradient descent

w(tHl)




M Otlvatl ng Ad d G I'a d (Duchi, Hazan, Singer 2011)

Assuming w & ]Rd, standard stochastic (sub)gradient descent
updates are of the form:

w§t+1) (1)
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Should all features share the same learning rate?

— W

Often have high-dimensional feature spaces
— Many features are irrelevant
— Rare features are often very informative

Adagrad provides a feature-specific adaptive learning rate by
incorporating knowledge of the geometry of past observations




Why Adapt to Geometry?
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® Frequent, irrelevant

® Infrequent, predictive
(3)
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Not All Features are Created Equal

Examples:

High-dimensional image features
Text data:

The most unsung birthday
in American business and
technological history
this year may be the 50th
anniversary of the Xerox
914 photocopier.?

?The Atlantic, July/August 2010.

Images from Duchi et al. ISMP 2012 slides
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Visualizing Effect

SGD
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Regret Minimization

How do we assess the performance of an online algorithm?

Algorithm iteratively predicts w(?)
Incur loss gt(w<t))

Regret:
What is the total incurred loss of algorithm relative to the best choice
of W that could have been made retrospectively

T

T
R(T) =) ty(w") - nf > 4 (w)
t=1 t=1




Regret Bounds for Standard SGD

e Standard projected gradient stochastic updates:

wl*D = arg min [lw — (w( —7g,)|[3

e Standard regret bound:
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Projected Gradient using Mahalanobis

e Standard projected gradient stochastic updates:

- t 2
w1 — arg min [jw — (w") —ng,)||3
weyy
* What if instead of an L, metric for projection, we considered the
Mahalanobis norm

(+1) — arg min [|jw — (W —nA~g)|%

weW

W




Mahalanobis Regret Bounds

witth) — arg min ||lw — (W(t) — 7714_1915)“,24

weYY
e What A to choose?

. Regret bound now:

1
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 What if we minimize upper bound on regret w.r.t. A in hindsight?

T
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Mahalanobis Regret Minimization

* Objective:

T
mjn; gl A~ tg, subject to A = 0,tr(A) < C

e Solution:

T
A=c|> agt
t=1

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

N

* A defines the norm of the metric space we should be operating in




AdaGrad Algorithm

* Attime t, estimate optimal (sub)gradient modification A by

t
At — (Z gTQZ)
T=1

* Fordlarge, A, is computationally intensive to compute. Instead,

2

* Then, algorithm is a simple modification of normal updates:
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AdaGrad in Euclidean Space
For W = R¢,

For each feature dimension,

t+1 t
w,f ) A w,f ) _ MNt.i Gt i
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Each feature dimension has it’s own learning rate!
— Adapts with t
— Takes geometry of the past observations into account
— Primary role of n is determining rate the first time a feature is encountered




AdaGrad Theoretical Guarantees

e AdaGrad regret bound: R.. := max Hw(t) — W |

~d !
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— In stochastlc setting:
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* Thisreallyis used in practice!
* Many cool examples. Let’s just examine one...




AdaGrad Theoretical Example

Expect to out-perform when gradient vectors are sparse

SVM hinge loss example:

be(w) = [1 —y" (x",w)]1
x' € {-1,0,1}“
If x! # 0 with probability o< j~%, a>1

E
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Previously best known method: E
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Neural Network Learning

* Very non-convex problem, but use SGD methods anyway

{(w, ) = log(1 + exp({[p((w1, 1)) - - - p({wk;, Tk))], Z0)))

P
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(Dean et al. 2012)

Accuracy on Test Set
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Distributed, d = 1.7 - 10° parameters. SGD and AdaGrad use 80 Images from Duchi et

machines (1000 cores), L-BFGS uses 800 (10000 cores) al. ISMP 2012 slides
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What you should know about
Logistic Regression (LR) and Click Prediction

* Click prediction problem:

— Estimate probability of clicking
— Can be modeled as logistic regression

e Logistic regression model: Linear model
e Gradient ascent to optimize conditional likelihood
e QOverfitting + regularization

* Regularized optimization
— Convergence rates and stopping criterion

» Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD

* AdaGrad motivation, derivation, and algorithm

26




