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Case Study 1: Estimating Click Probabilities



Support/Resources

• Office Hours

– Yao Lu: Tue 1:30-2:30, CSE 220

– John Thickstun: Weds 4-5, CSE 220



Learning Problem for Click Prediction

• Prediction task:

• Features:

• Data:

– Batch:

– Online:

• Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, 
boosting,…)
– Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Challenge 1: Complexity of computing 
gradients

• What’s the cost of a gradient update step for LR???
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Challenge 2: Data is streaming

• Assumption thus far: Batch data

• But, click prediction is a streaming data task:
– User enters query, and ad must be selected:

• Observe xj, and must predict yj

– User either clicks or doesn’t click on ad:

• Label yj is revealed afterwards

– Google gets a reward if user clicks on ad

– Weights must be updated for next time:
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SGD: Stochastic Gradient Ascent (or Descent)

• “True” gradient:

• Sample based approximation:

• What if we estimate gradient with just one sample???

– Unbiased estimate of gradient

– Very noisy!

– Called stochastic gradient ascent (or descent)

• Among many other names

– VERY useful in practice!!!
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Stochastic Gradient Ascent: General Case

• Given a stochastic function of parameters:
– Want to find maximum

• Start from w(0)

• Repeat until convergence:
– Get a sample data point xt

– Update parameters:

• Works in the online learning setting!

• Complexity of each gradient step is constant in number of examples!

• In general, step size changes with iterations
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Stochastic Gradient Ascent for Logistic 
Regression

• Logistic loss as a stochastic function:

• Batch gradient ascent updates:

• Stochastic gradient ascent updates:
– Online setting:
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Convergence Rate of SGD

• Theorem: 
– (see Nemirovski et al ‘09 from readings)

– Let f be a strongly convex stochastic function

– Assume gradient of f is Lipschitz continuous and bounded

– Then, for step sizes:

– The expected loss decreases as O(1/t):
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Convergence Rates for 
Gradient Descent/Ascent vs. SGD

• Number of Iterations to get to accuracy

• Gradient descent:

– If func is strongly convex: O(ln(1/ϵ)) iterations

• Stochastic gradient descent:

– If func is strongly convex: O(1/ϵ) iterations

• Seems exponentially worse, but much more subtle:

– Total running time, e.g., for logistic regression:

• Gradient descent:

• SGD:

• SGD can win when we have a lot of data

– See readings for more details
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Constrained SGD: Projected Gradient

• Consider an arbitrary restricted feature space

• Optimization objective:

• If , can use projected gradient for (sub)gradient descent
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Motivating AdaGrad (Duchi, Hazan, Singer 2011)

• Assuming                   , standard stochastic (sub)gradient descent 
updates are of the form:

• Should all features share the same learning rate?

• Often have high-dimensional feature spaces
– Many features are irrelevant

– Rare features are often very informative

• Adagrad provides a feature-specific adaptive learning rate by 
incorporating knowledge of the geometry of past observations
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Why Adapt to Geometry?
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Examples from 

Duchi et al. 

ISMP 2012 

slides



Not All Features are Created Equal

• Examples:
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Images from Duchi et al. ISMP 2012 slides
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Credit: 

http://imgur.com/a/Hqolp

Visualizing Effect



Regret Minimization

• How do we assess the performance of an online algorithm?

• Algorithm iteratively predicts

• Incur loss

• Regret: 
What is the total incurred loss of algorithm relative to the best choice 
of        that could have been made retrospectively
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Regret Bounds for Standard SGD 

• Standard projected gradient stochastic updates:

• Standard regret bound:
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Projected Gradient using Mahalanobis
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• Standard projected gradient stochastic updates:

• What if instead of an L2 metric for projection, we considered the 
Mahalanobis norm



Mahalanobis Regret Bounds

• What A to choose?  

• Regret bound now:

• What if we minimize upper bound on regret w.r.t. A in hindsight?
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Mahalanobis Regret Minimization

• Objective:

• Solution: 

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

• A defines the norm of the metric space we should be operating in
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AdaGrad Algorithm
• At time t, estimate optimal (sub)gradient modification A by

• For d large, At is computationally intensive to compute.  Instead,

• Then, algorithm is a simple modification of normal updates:

21



AdaGrad in Euclidean Space

• For   ,

• For each feature dimension,

where 

• That is,

• Each feature dimension has it’s own learning rate!
– Adapts with t

– Takes geometry of the past observations into account

– Primary role of η is determining rate the first time a feature is encountered 
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AdaGrad Theoretical Guarantees
• AdaGrad regret bound:

– In stochastic setting:  

• This really is used in practice!

• Many cool examples. Let’s just examine one…
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AdaGrad Theoretical Example

• Expect to out-perform when gradient vectors are sparse

• SVM hinge loss example: 

• If xj
t ≠ 0 with probability

• Previously best known method: 
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• Very non-convex problem, but use SGD methods anyway

Neural Network Learning
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Images from Duchi et 

al. ISMP 2012 slides



What you should know about 
Logistic Regression (LR) and Click Prediction

• Click prediction problem:
– Estimate probability of clicking

– Can be modeled as logistic regression

• Logistic regression model: Linear model

• Gradient ascent to optimize conditional likelihood

• Overfitting + regularization

• Regularized optimization
– Convergence rates and stopping criterion

• Stochastic gradient ascent for large/streaming data
– Convergence rates of SGD

• AdaGrad motivation, derivation, and algorithm
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