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Learning Problem for Click Prediction
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Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision trees,
boosting,...)

— Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Standard v. Regularized Updates

¢ Maximum conditional likelihood estimate
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* Regularized maximum conditional likelihood estimate
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Challenge 1: Complexity of computing
gradients . (wees

* What's the cost of a gradient update step for LR???
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Challenge 2: Data is streaming

* Assumption thus far: Batch data

* But, click prediction is a streaming data task:

— User enters query, and ad must be selected:
* Observe xi, and must predict yi

— User either clicks or doesn’t click on ad:

* Label yiis revealed afterwards
— Google gets a reward if user clicks on ad

— Weights must be updated for next time:
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SGD: Stochastic Gradient Ascent (or Descent)
* “True” gradient: Vf(w) = Ex [Vf(w, X)]

* Sample based approximation:

* What if we estimate gradient with just one sample???
— Unbiased estimate of gradient
— Very noisy!
— Called stochastic gradient ascent (or descent)
* Among many other names
— VERY useful in practice!!!
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Stochastic Gradient Ascent: General Case

* Given a stochastic function of parameters:
— Want to find maximum

* Start from w(®

* Repeat until convergence:
— Get a sample data point xt

— Update parameters:
* Works in the online learning setting!

* Complexity of each gradient step is constant in number of examples!
* In general, step size changes with iterations
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Stochastic Gradient Ascent for Logistic
Regression

* Logistic loss as a stochastic function:
Ex [t(w,x)] = Ex [In P(y|x, w) — A[|w]|[3]
2

e Batch gradient ascent updates:

N
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* Stochastic gradient ascent updates:
— Online setting:

wgtﬂ) — wgt) + My {—)\wgt) + a:,gt) [y(t) — P(Y = 1|X(t)7 W(t))]}
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Convergence Rate of SGD

* Theorem:
— (see Nemirovski et al ‘09 from readings)

Let £ be a strongly convex stochastic function

Assume gradient of £ is Lipschitz continuous and bounded

Then, for step sizes:

The expected loss decreases as O(1/t):
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Convergence Rates for
Gradient Descent/Ascent vs. SGD

* Number of Iterations to get to accuracy
l(w*) —l(w) <€

* Gradient descent:
— If func is strongly convex: O(In(1/€)) iterations

* Stochastic gradient descent:
— If func is strongly convex: O(1/€) iterations

* Seems exponentially worse, but much more subtle:
— Total running time, e.g., for logistic regression:

* Gradient descent:
* SGD:

* SGD can win when we have a lot of data

— See readings for more details
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Constrained SGD: Projected Gradient

 Consider an arbitrary restricted feature space w € VY

* Optimization objective:

* If W € W, can use projected gradient for (sub)gradient descent

wttD) —
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M Otlvatl ng AdaG ra d (Duchi, Hazan, Singer 2011)

Assuming W € Rd, standard stochastic (sub)gradient descent
updates are of the form:

w§t+1) (t)

i T TGt

Should all features share the same learning rate?

—w

Often have high-dimensional feature spaces
— Many features are irrelevant
— Rare features are often very informative

Adagrad provides a feature-specific adaptive learning rate by
incorporating knowledge of the geometry of past observations
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Why Adapt to Geometry?

Yt ﬂc't,l th,z 9&,3
1 1 0 0
-11] .5 0 1
1| -5 1 0
-1 0 0 0 Examples from
1 b 0 0 Duchi et al.
ISMP 2012

_]:-I' ]:'l g-) 8 slides
-1 -5 0 1

® Frequent, irrelevant

® Infrequent, predictive

® Infrequent, predictive
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Not All Features are Created Equal

e Examples:

High-dimensional image features
Text data: !

The most unsung birthday
in American business and
technological history
this year may be the 50th
anniversary of the Xerox
914 photocopier.?

@The Atlantic, July/August 2010.

Images from Duchi et al. ISMP 2012 slides
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Visualizing Effect

Momentum
NAG
Adagrad
Adadelta

— Adagrad
Adadelta
Rmsprop |

SGD
Momentum
NAG
Adagrad

Adadelta
Rmsprop

Credit:
http://imgur.com/a/Hqolp
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Regret Minimization
How do we assess the performance of an online algorithm?

Algorithm iteratively predicts W(t)
Incur loss ¢, (w(t))

Regret:
What is the total incurred loss of algorithm relative to the best choice
of W that could have been made retrospectively

wew

R(T)=> £(w®) — inf > " 4,(w)
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Regret Bounds for Standard SGD

* Standard projected gradient stochastic updates:

(t41) _ ; — (w® — 2
W — argv{,rélilvﬂw (w nge)| |2

* Standard regret bound:
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Projected Gradient using Mahalanobis

» Standard projected gradient stochastic updates:

(t+1) _ ' — (w® — 2
W — argv{,ré%ﬂw (w nge)| |3

* What if instead of an L, metric for projection, we considered the
Mahalanobis norm

w(t) = arg min [jw — (w(®) — nA~1g,)|I3
wew
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Mahalanobis Regret Bounds

wlttD) = arg min [|w — (W — A~ g%

* What A to choose?

* Regret bound now:
T

T
1
O Y < = e _ w12 L 2
;Zlft(w ) — le(w™) < 277”“’ w3+ 2;:1“915”,4—1

*  What if we minimize upper bound on regret w.r.t. A in hindsight?
T
w47
t=1
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Mahalanobis Regret Minimization

Objective:
T
. T -1 .
A - <
min tg_l 9; gt subject to A = 0,tr(A) < C

Solution:

T
A=c thgtT
t=1

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

1
2

A defines the norm of the metric space we should be operating in
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AdaGrad Algorithm

* At time t, estimate optimal (sub)gradient modification A by

¢ 3
At = (Z gT.QZ)
T=1

* Fordlarge, A, is computationally intensive to compute. Instead,

* Then, algorithm is a simple modification of normal updates:

W = arg min |w — (w ndiag(A;) Qt)deag(At)
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AdaGrad in Euclidean Space
« ForW =RY

* For each feature dimension,

1
w§t+ = wgt) — Nt,i0t,i

where

MNti =

* Thatis, ® n
Cw, — —F/——0ti

7 p 5
ZTZI gT,i
* Each feature dimension has it's own learning rate!

— Adapts with t
— Takes geometry of the past observations into account

w@(t—i—l)

— Primary role of n is determining rate the first time a feature is encountered
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AdaGrad Theoretical Guarantees

* AdaGrad regret bound: R, = max Hw(t) -

T ~d
t=1 =1

— In stochastic setting:

T d
g(%;d”)] —l(w*) < Z [[lg1:7,5]]2]

* This really is used in practice!

* Many cool examples. Let’ s just examine one..
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AdaGrad Theoretical Example

* Expect to out-perform when gradient vectors are sparse
* SVM hinge loss example:

b(w) = [1—y' (x', W)l
x! € {-1,0,1}4
* If x{ # 0 with probability o< j~%, a>1

1 . [[w*[loo 1-a/2
E[E (thzlw( )>] —Uw ):(’)( T -max{log d, d*~*/ })

. i : RN oo (19l
Previously best known method: E [ﬁ (T ;vw >>} —Yw*)=0 < : \/E)
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Neural Network Learning

* Very non-convex problem, but use SGD methods anyway
U(w, z) =log(1 + exp({[p({w1, 1)) - - - p((w, Tk))], 0)))

1
Accuracy on Test Set -
p(e) 1+ exp(a)

~A-SGD p(<w17$1>
-7 GPU
—©-Downpour SGD
—8- Downpour SGD w/Adagrad|
Sandblaster L-BFGS
0

0 20 40 Time ?quours) 80 100 121 T Ty T3 T4 I

(Dean et al. 2012)

8

Average Frame Accuracy (%)

Distributed, d = 1.7 - 10° parameters. SGD and AdaGrad use 80 Images from Duchi et
machines (1000 cores), L-BFGS uses 800 (10000 cores) al. ISMP 2012 slides
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What you should know about
Logistic Regression (LR) and Click Prediction

Click prediction problem:
— Estimate probability of clicking
— Can be modeled as logistic regression

* Logistic regression model: Linear model
* Gradient ascent to optimize conditional likelihood
» Overfitting + regularization
* Regularized optimization
— Convergence rates and stopping criterion

* Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD

* AdaGrad motivation, derivation, and algorithm
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