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Case Study 4: Collaborative Filtering 
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Interpre>ng	
  Low-­‐Rank	
  Matrix	
  Comple>on	
  (aka	
  
Matrix	
  Factoriza>on)	
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Matrix Completion as a Graph 
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Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X = Rows index users 
Columns index movies 

Coordinate Descent for Matrix 
Factorization: Alternating Least-Squares 

n  Fix movie factors, optimize for user factors 
¨  Independent least-squares over users 

n  Fix user factors, optimize for movie factors 
¨  Independent least-squares over movies 

 
n  System may be underdetermined:  

n  Converges to 
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Alternating Least Squares Update Function 
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SGD for Matrix Factorization in GraphLab 
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n  Latent user and movie factors: 

n  Observations 
n  Hyperparameters: 

n  Want to predict new movie rating: 

Bayesian PMF Example 

Lu Rv

ruv
u = 1, . . . , n

v = 1, . . . ,m
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n  Outline of Bayesian PMF sampler 

Bayesian PMF Gibbs Sampler 
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n  For user u: 

n  Symmetrically for Rv conditioned on L (breaks down over movies) 
n  Luckily, we can use this to get our desired posterior samples 

Bayesian PMF Example 

p(Lu | X,R,�u) / p(Lu | �u)
Y

v2Vu

p(ruv | Lu, Rv,�r)

PMF Gibbs Sampling in GraphLab 
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Release	
  2.2	
  available	
  now	
  

6. Before

8. A!er

7. A!er

http://graphlab.org!
Documentation… Code… Tutorials… (more on the way)  

GraphChi	
  0.1	
  available	
  now	
  
http://graphchi.org!

What you need to know… 

n  Data-parallel versus graph-parallel computation 

n  Bulk synchronous processing versus asynchronous 
processing 

n  GraphLab system for graph-parallel computation 
¨  Data representation 
¨  Update functions 
¨  Scheduling  
¨  Consistency model 

n  ALS, SGD and Gibbs for matrix factorization/PMF in 
GraphLab 
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Reading 

n  Papers under “Case Study IV: Parallel Learning with 
GraphLab” 

n  Optional: 
¨  Parallel Splash BP 

http://www.ml.cmu.edu/research/dap-papers/dap-gonzalez.pdf 
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Acknowledgements 

n  Slides based on Carlos Guestrin’s GraphLab talk 
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Case Study 5: Mixed Membership Modeling 

Document Retrieval 
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n  Goal: Retrieve documents of interest  
n  Challenges:  

¨ Tons of articles out there 
¨ How should we measure similarity? 
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Task 1: Find Similar Documents 
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n  First considered: 
¨  Input: Query article  
¨ Output: Set of k similar articles 

Task 2: Cluster Documents 
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n  Then examined: 
¨ Cluster documents based on topic 
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Document Representation 
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n  Bag of words model 

document d 

A Generative Model 
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n  Documents: 
n  Associated topics:  
n  Parameters: ✓ = {⇡,�}
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A Generative Model 
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n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

✓ = {⇡,�}

⇡

�k
zd

wd
i

K

Nd
D

x

1
, . . . , x

D

z1, . . . , zD

Model In Pictures 

n  Mixture weights (on topics)  

n  Topic distributions (on words) 

n  For each document, 

⇡
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Bayesian Document Model 

n  Model parameters     ,          unknown 

n  Bayesian approach 

n  Need distribution on pmf’s 

⇡
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⇡
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The Simplex in 3D 

n  The simplex defines the hyperplane of vectors that sum to 1 
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Dirichlet Distributions 
n  The Dirichlet distribution is defined on the simplex 
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Moments: 
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Dirichlet Probability Densities 

⇡ ⇠ Dir(↵1, . . . ,↵K)

Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation
(1,0,0) (0,0,1)

(1/2,1/2,0)(1/3,1/3,1/3) (1/4,1/4,1/2)

(0,1,0)

Come from a Dirichlet distribution
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Dirichlet Samples 

n  Samples are sparse for small values of  

Dir(✓ | 0.1, 0.1, 0.1, 0.1, 0.1)⇡

↵i

Dir(✓ | 1.0, 1.0, 1.0, 1.0, 1.0)⇡
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Model Summary 

n  Prior on model parameters 
¨  E.g., symmetric Dirichlet for 

 
¨  Dirichlet prior for topic parameters  

n  Sample observations as  
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Posterior Inference via Sampling 

n  Iterate between sampling 

 
n  What form do these complete conditionals take? 

¨  First a look at statements of conditional independence in directed 
graphical models  
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Conditional Independence in 
Bayes Nets 
n  Consider 4 different junction configurations 

 
n  Conditional versus unconditional independence: 
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Sec. 2.5. Graphical Models 59

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of x
and z (top) or conditional independence of x and z (bottom) given an observation y (gray node). If a
ball starting at one of the x or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally/marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally/marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables xi and xj associated
with nodes i and j are then deemed conditionally dependent given the random variables
xVk associated with a set of evidence nodes Vk (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
n
∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations


