

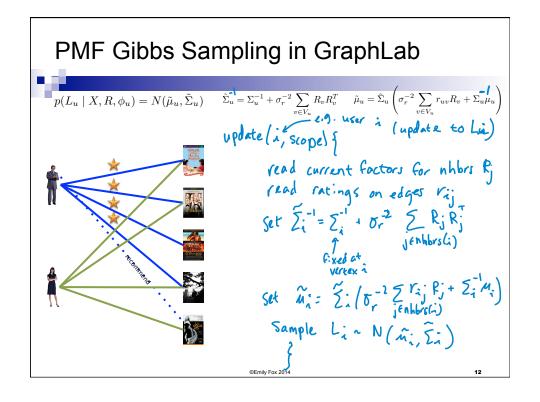
Bayesian PMF Example

For user u:

$$p(L_u \mid X, R, \phi_u) \propto p(L_u \mid \phi_u) \prod_{v \in V_u} p(r_{uv} \mid L_u, R_v, \phi_r)$$

$$= N(L_u \mid M_u, \Sigma_u) \prod_{v \in V_u} N(r_{uv} \mid L_u, R_v, \phi_r)$$

$$= N(L_u \mid M_u, \Sigma_u) \prod_{v \in V_u} V_v \text{ conjugacy}$$
where $\widetilde{\Sigma}_u = \Sigma_u + \sigma_r \sum_{v \in V_u} S_v \sum_{v \in$



Release 2.2 available now http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now http://graphchi.org

What you need to know...

- Data-parallel versus graph-parallel computation
- Bulk synchronous processing versus asynchronous processing
- GraphLab system for graph-parallel computation
 - Data representation
 - □ Update functions
 - □ Scheduling
 - □ Consistency model

 ALS, SGD and Gibbs for matrix factorization/PMF in GraphLab

©Emily Fox 2014

14

Reading

- Papers under "Case Study IV: Parallel Learning with GraphLab"
- Optional:
 - □ Parallel Splash BP http://www.ml.cmu.edu/research/dap-papers/dap-gonzalez.pdf

©Emily Fox 2014

15

Acknowledgements

Slides based on Carlos Guestrin's GraphLab talk

Emily Fox 2014

16

Case Study 5: Mixed Membership Modeling

Clustering Documents Revisited, Latent Dirichlet Allocation

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox

February 27th, 2014

©Emily Fox 2014

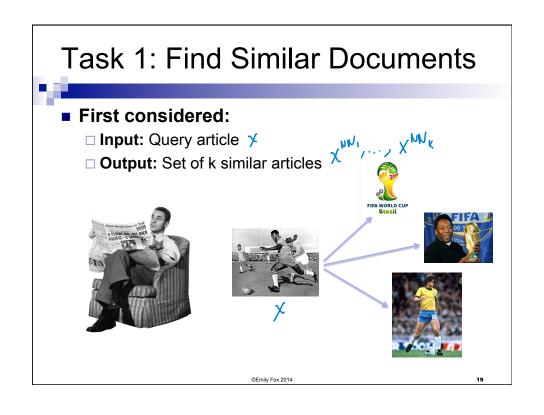
17

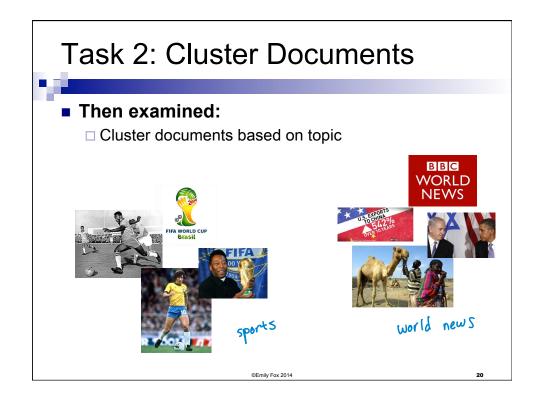
Document Retrieval

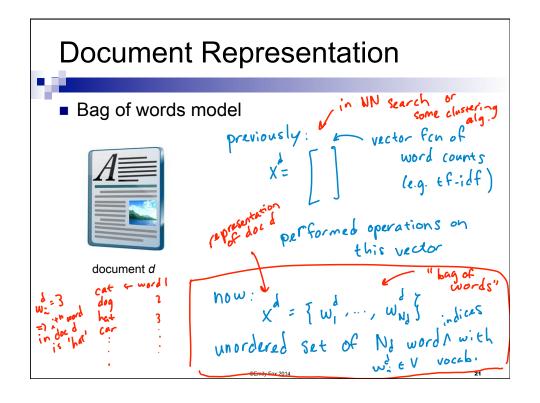
- - Goal: Retrieve documents of interest
 - **■** Challenges:
 - □ Tons of articles out there
 - ☐ How should we measure similarity?

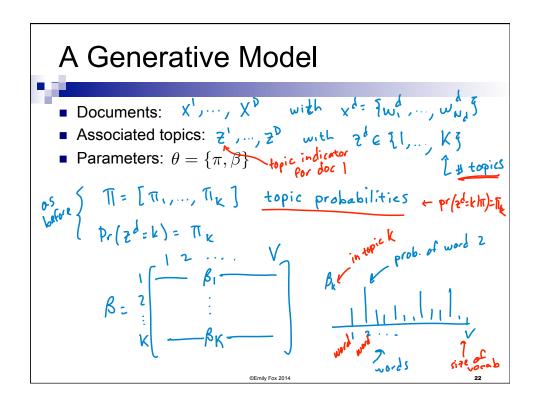
©Emily Fox 2014

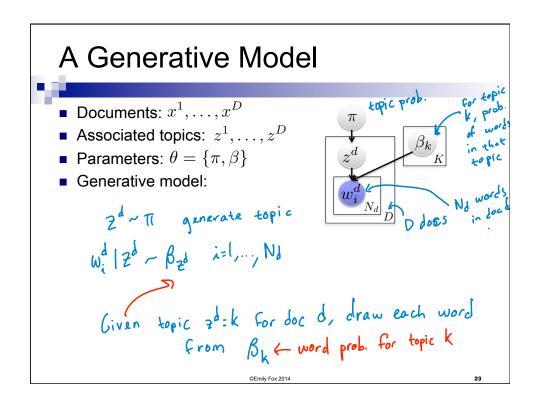
18

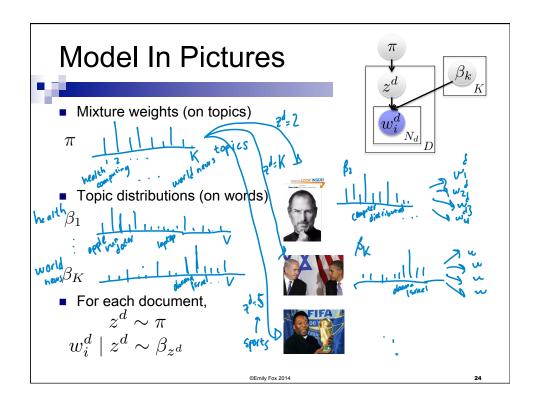


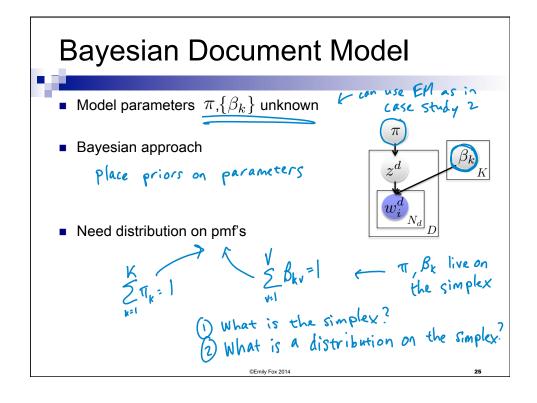


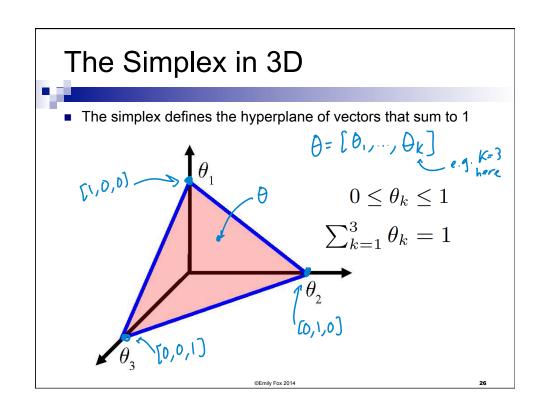


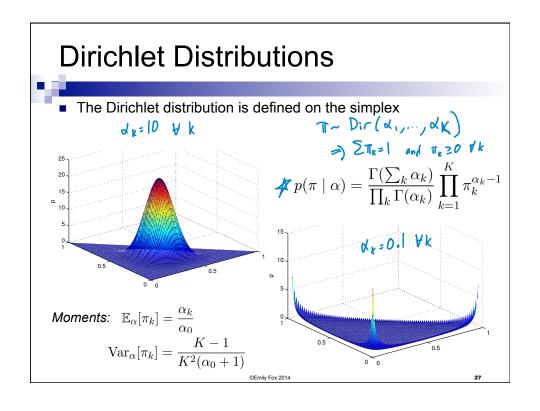


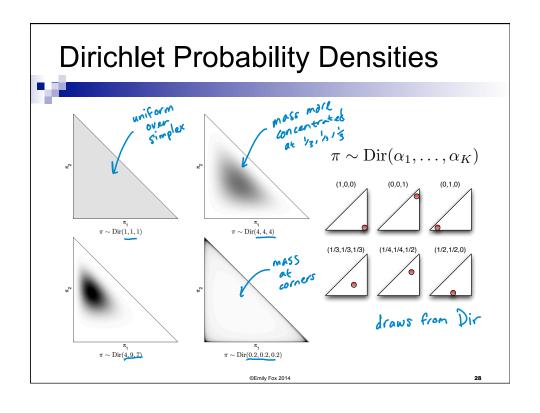


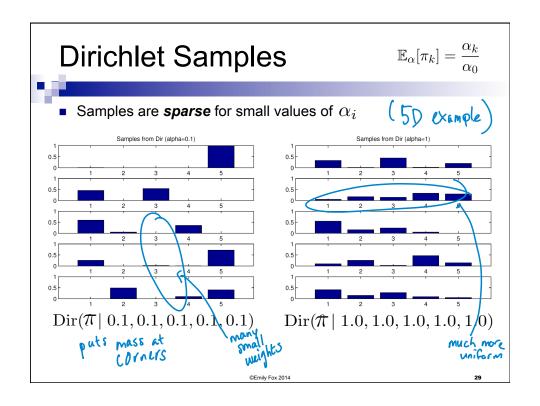


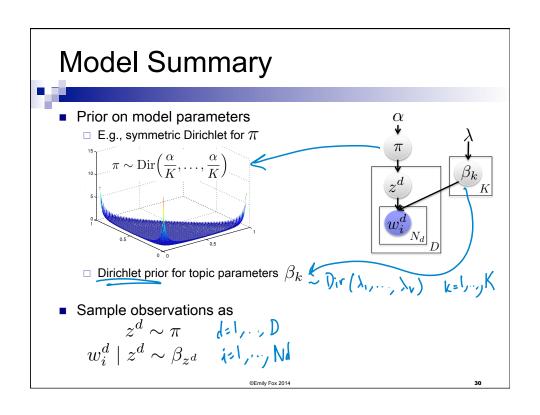












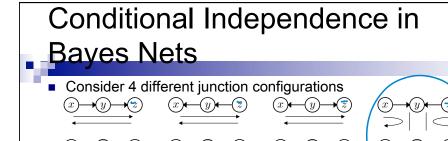
Posterior Inference via Sampling

- Iterate between sampling 11~ p(11 | {265, {Bk}, {wis}) For Kaling K κ-ρ(βκ | π, {z^d}, [β;, j+k3, [ω^d])

 δι δ:1,..., D

 z^d ~ ρ(z^d | π, {zⁱ, i+d3, [βκ], [w^d]) For dilining
- What form do these complete conditionals take?
 - ☐ First a look at statements of conditional independence in directed graphical models

©Emily Fox 2014



• Conditional versus unconditional independence:

$$P(x,y,z) = p(x)p(z)p(y|x,z) \Rightarrow p(x,z) = p(x)p(z) \Rightarrow x \perp z$$

p(x, z|y) & p(x,y,z) = p(x)p(z)p(y(x,z)) t p(x|y) p(z|y) & x = earthquake z = burglar, y = car alarm | a | arm (y:1) , an increase in earthquake p(x|y), means p(z|y) lower