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Case Study 4: Collaborative Filtering 

The	  GraphLab	  Framework	  

Scheduler	   Consistency	  Model	  

Graph	  Based	  
Data	  Representa+on	  

Update	  Func>ons	  
User	  Computa+on	  
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recommend	  

City	  of	  God	  

Wild	  Strawberries	  

The	  Celebra>on	  

La	  Dolce	  Vita	  

Women	  on	  the	  Verge	  of	  a	  
Nervous	  Breakdown	  

What	  do	  I	  	  
recommend???	  
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Interpre>ng	  Low-‐Rank	  Matrix	  Comple>on	  (aka	  
Matrix	  Factoriza>on)	  
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Matrix Completion as a Graph 
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Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X = Rows index users 
Columns index movies 

Coordinate Descent for Matrix 
Factorization: Alternating Least-Squares 

n  Fix movie factors, optimize for user factors 
¨  Independent least-squares over users 

n  Fix user factors, optimize for movie factors 
¨  Independent least-squares over movies 

 
n  System may be underdetermined:  

n  Converges to 
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Alternating Least Squares Update Function 
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recommend	  

min
Rv

X

u2Uv

(Lu ·Rv � ruv)
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SGD for Matrix Factorization in GraphLab 
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n  Latent user and movie factors: 

n  Observations 
n  Hyperparameters: 

n  Want to predict new movie rating: 

Bayesian PMF Example 

Lu Rv

ruv
u = 1, . . . , n

v = 1, . . . ,m
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n  Outline of Bayesian PMF sampler 

Bayesian PMF Gibbs Sampler 
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n  For user u: 

n  Symmetrically for Rv conditioned on L (breaks down over movies) 
n  Luckily, we can use this to get our desired posterior samples 

Bayesian PMF Example 

p(Lu | X,R,�u) / p(Lu | �u)
Y

v2Vu

p(ruv | Lu, Rv,�r)

PMF Gibbs Sampling in GraphLab 
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recommend	  
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Release	  2.2	  available	  now	  

6. Before

8. A!er

7. A!er

http://graphlab.org!
Documentation… Code… Tutorials… (more on the way)  

GraphChi	  0.1	  available	  now	  
http://graphchi.org!

What you need to know… 

n  Data-parallel versus graph-parallel computation 

n  Bulk synchronous processing versus asynchronous 
processing 

n  GraphLab system for graph-parallel computation 
¨  Data representation 
¨  Update functions 
¨  Scheduling  
¨  Consistency model 

n  ALS, SGD and Gibbs for matrix factorization/PMF in 
GraphLab 
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Reading 

n  Papers under “Case Study IV: Parallel Learning with 
GraphLab” 

n  Optional: 
¨  Parallel Splash BP 

http://www.ml.cmu.edu/research/dap-papers/dap-gonzalez.pdf 
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Acknowledgements 

n  Slides based on Carlos Guestrin’s GraphLab talk 
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Clustering Documents 
Revisited, 
Latent Dirichlet Allocation 

Machine Learning for Big Data 
CSE547/STAT548, University of Washington 

Emily Fox 
February 27th, 2014 

©Emily Fox 2014 

Case Study 5: Mixed Membership Modeling 

Document Retrieval 
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n  Goal: Retrieve documents of interest  
n  Challenges:  

¨ Tons of articles out there 
¨ How should we measure similarity? 
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Task 1: Find Similar Documents 
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n  First considered: 
¨  Input: Query article  
¨ Output: Set of k similar articles 

Task 2: Cluster Documents 
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n  Then examined: 
¨ Cluster documents based on topic 
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Document Representation 
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n  Bag of words model 

document d 

A Generative Model 
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n  Documents: 
n  Associated topics:  
n  Parameters: ✓ = {⇡,�}
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A Generative Model 
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n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

✓ = {⇡,�}

⇡

�k
zd

wd
i

K

Nd
D

x

1
, . . . , x

D

z1, . . . , zD

Model In Pictures 

n  Mixture weights (on topics)  

n  Topic distributions (on words) 

n  For each document, 

⇡
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Bayesian Document Model 

n  Model parameters     ,          unknown 

n  Bayesian approach 

n  Need distribution on pmf’s 

⇡
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⇡

�k
zd

wd
i

K

Nd
D

{�k}

The Simplex in 3D 

n  The simplex defines the hyperplane of vectors that sum to 1 
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Dirichlet Distributions 
n  The Dirichlet distribution is defined on the simplex 
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Moments: 
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Dirichlet Probability Densities 

⇡ ⇠ Dir(↵1, . . . ,↵K)

Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation
(1,0,0) (0,0,1)

(1/2,1/2,0)(1/3,1/3,1/3) (1/4,1/4,1/2)

(0,1,0)

Come from a Dirichlet distribution
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Dirichlet Samples 

n  Samples are sparse for small values of  

Dir(✓ | 0.1, 0.1, 0.1, 0.1, 0.1)⇡

↵i

Dir(✓ | 1.0, 1.0, 1.0, 1.0, 1.0)⇡
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Model Summary 

n  Prior on model parameters 
¨  E.g., symmetric Dirichlet for 

 
¨  Dirichlet prior for topic parameters  

n  Sample observations as  
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Posterior Inference via Sampling 

n  Iterate between sampling 

 
n  What form do these complete conditionals take? 

¨  First a look at statements of conditional independence in directed 
graphical models  
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⇡
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Conditional Independence in 
Bayes Nets 
n  Consider 4 different junction configurations 

 
n  Conditional versus unconditional independence: 

©Emily Fox 2014 32 

Sec. 2.5. Graphical Models 59

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of x
and z (top) or conditional independence of x and z (bottom) given an observation y (gray node). If a
ball starting at one of the x or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally/marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally/marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables xi and xj associated
with nodes i and j are then deemed conditionally dependent given the random variables
xVk associated with a set of evidence nodes Vk (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
n
∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations
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Bayes Ball Algorithm 

n  Consider 4 different junction configurations 

 
n  Bayes ball algorithm 
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Sec. 2.5. Graphical Models 59

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of x
and z (top) or conditional independence of x and z (bottom) given an observation y (gray node). If a
ball starting at one of the x or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally/marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally/marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables xi and xj associated
with nodes i and j are then deemed conditionally dependent given the random variables
xVk associated with a set of evidence nodes Vk (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
n
∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations

Markov Blanket 

n  A node is conditionally independent of all other nodes in the 
graph given its Markov blanket 

 
n  Gibbs sampling iterates between 

full conditionals 

    à simplify to 
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60 CHAPTER 2. BACKGROUND

xi

Figure 2.3. Markov blanket for xt consisting of the node’s parents, coparents, and children. The node
xt is then conditionally independent of all other nodes in the graph given its Markov blanket.

λ λ

θ θ

y1 y2 y3 y4 yn
yi

n

Figure 2.4. Graphical representation of the hierarchical Bayesian model of n exchangeable random
variables implied by de Finetti’s theorem. Each observation is an independent draw from a density
parameterized by θ, which itself has a prior distribution with hyperparameters λ. Left : An explicit
representation of the graphical model. Right : A compact representation using a plate to denote n
replicates of the observations yi.

yi. The fact that this set of random variables is yielded conditionally i.i.d. given θ can
be directly verified from the graphical model by using the Markov blanket concept or
the Bayes ball algorithm.

! 2.5.3 Undirected Graphical Models

Many inference algorithms for directed graphical models rely on first converting the
graph to an undirected form. This conversion process, referred to as moralization,
“marries” any coparents by connecting them with an undirected edge. Each directed
edge is then converted into an undirected edge. See Fig. 2.5. In the following, we
provide a very brief sketch of the theory of undirected graphical models that we employ
in subsequent sections.

Undirected graphical models, or Markov random fields (MRF), are typically used
when there is no causal structure to the data, as in images, which instead have spatial
dependencies. Whereas the directed graphical model is easily derived from the factor-
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Unplated Document Model 

n  Recall that the plate notation is really indicating 

©Emily Fox 2014 35 

⇡
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Complete Conditional for 
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n  Recall conjugate Dirichlet prior 

n  Likelihood: 
n  Dirichlet posterior  

¨  Count occurrences of   
¨  Then, 

 

¨  Conjugacy: Posterior has same form as prior 

⇡ ⇠ Dir(↵1, . . . ,↵K) p(⇡ | ↵) =
�(

P
k ↵k)Q

k �(↵k)
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Complete Conditional for 
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�k

n  Again, Dirichlet prior 

n  Consider docs d such that 
¨  For these observations, 
¨  Do any other docs depend on      ?  

n  Then, 

¨  Again, posterior has same form as prior 

�k

Complete Conditional for 
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⇡
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zd

n  We have 

n  Calculate the posterior for each value of zd 
(“responsibility” of each topic to the doc): 

n  Sample each cluster indicator as 

rdk = p(zd = k | {wd
i },⇡,�) =

⇡kp({wd
i } | �k)P

j ⇡jp({wd
i } | �j)

zd ⇠ ⇡

wd
i | zd, {�k} ⇠ �zd
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n  Now: Document may belong to multiple clusters 

EDUCATION 

FINANCE 

TECHNOLOGY 

Task 3: Mixed Membership Models 
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Latent Dirichlet Allocation (LDA) 
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Latent Dirichlet Allocation (LDA) 

©Emily Fox 2014 41 

Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

✏ But we only observe the documents; the other structure is hidden.

✏ We compute the posterior

p.topics, proportions, assignments j documents/

Latent Dirichlet Allocation (LDA) 
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LDA Generative Model 
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n  Observations: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

wd
1 , . . . , w

d
Nd

zd1 , . . . , z
d
Nd

✓ = {{⇡d}, {�k}}

LDA Joint Probability 

�k

wd
i

K

Nd
D

zdi

⇡d↵

p(·) =
KY

k=1

p(�k | �)
DY

d=1

p(⇡d | ↵)
 

NdY

i=1

p(zdi | ⇡d)p(wd
i | zdi ,�)

!

�
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n  Data: The OCR’ed collection of Science from 1990-2000 
¨  17K documents 
¨  11M words 
¨  20K unique terms (stop words and rare words removed) 

n  Model: 100-topic LDA model 

Example Inference – Topic Weights 

Example inference

1 8 16 26 36 46 56 66 76 86 96

Topics

P
ro
b
a
b
ili
ty

0
.0

0
.1

0
.2

0
.3

0
.4
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Example Inference – Topic Words 
Example inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations
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What you need to know… 

n  Bayesian specification of document clustering model 

n  Rules of conditional and unconditional independence in 
directed graphical models (Bayes nets) 
¨  Bayes’ ball 
¨  Markov blanket 

n  Gibbs sampling for Bayesian document model 

n  Latent Dirichlet allocation (LDA) motivation and 
generative model specification 
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Reading 

n  Mixed Membership Models: KM Sec. 27.3 
¨  Basic LDA:  

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent 
dirichlet allocation." the Journal of machine Learning research 3 
(2003): 993-1022. 

¨  Introduction:  
Blei, David M. "Probabilistic topic models." Communications of 
the ACM, vol. 55, no. 4 (2012): 77-84. 

¨  Sampling:  
Griffith, Thomas L. and Mark Steyvers. "Finding scientific topics." 
Proceedings of the National Academy of Sciences of the United 
States of America, Volume: 101, Supplement: 1 (2004): Pages: 
5228-5235 
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