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Matrix Completion Problem
"
X =

L oY
- Xi; known for black cells
X;; unknown for white cells
R - Rows index users
- Columns index movies °

m Filling missing data? well- appro. by Fank k meerix

m " n
&
n X = e L
\eot & 1S qraber WS
Keaxkom << am
N

N PMM\S

ooooooooooooo




Matrix Completion via Rank Minimization
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Approximate Matrix Completion
" S

m  Minimize squared error:
[ (Other loss functions are possible)
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Coordinate Descent for Matrix Factorization
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Minimizing Over User Factors
" JEE

m For each user u: i . — 2
min Z (Ly - Ry — Tuw)
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Coordinate Descent for Matrix
Factorization: Alternating Least-Squares

. L- o 2
min > (Lu- Ry —ruy)

(Uy0) iy #?

m Fix movie factors, optimize for user factors
i (Lu - Ry = Tu0)?
Independent least-squares over users min u v — Tuv
“ veEV,
m Fix user factors, optimize for movie factors
Independent least-squares over movies min (Lu - R, — 7”1“,)2
R
Y ueU,

System may be underdetermined:

Converges to
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Effect of Regularization
" S
min > (Lu- Ry = 1)

(U, 0) iy #?
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What you need to know...
" JE
m Matrix completion problem for collaborative
filtering
m Over-determined -> low-rank approximation
m Rank minimization is NP-hard

m Minimize least-squares prediction for known
values for given rank of matrix
Must use regularization

m Coordinate descent algorithm = “Alternating
Least Squares”
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Stochastic Gradient Descent

= JEE
o1 Ay Ay
%%ir (Lu'Rv_Tuv)2+7||L||%‘+7||R||%‘

m Observe one rating at a time r,

m Gradient observing r,:

m Updates:
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Local Optima v. Global Optima
* JEE—
m We are solving:
%1}51 (LuRv_Tuv)2+>‘u||L||%‘+)"UHRH%

T’U,’L)

m We (kind of) wanted to solve:

m Which is NP-hard...
How do these things relate???
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Eigenvalue Decompositions for PSD Matrices
" JEE

m Given a (square) symmetric positive semidefinite matrix:

Eigenvalues:
Thus rank is:

m  Approximation:

Property of trace:

Thus, approximate rank minimization by:
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Generalizing the Trace Trick
“
m Non-square matrices ain’t got no trace

m For (square) positive semidefinite matrices, matrix factorization:

m For rectangular matrices, singular value decomposition:

m Nuclear norm:
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Nuclear Norm Minimization
" S

m  Optimization problem:

m Possible to relax equality constraints:

m Both are convex problems!
(solved by semidefinite programming)
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Analysis of Nuclear Norm
" JEE

m Nuclear norm minimization = convex relaxation of rank minimization:
min rank(O) min ||O||.
) S
Ty = ®uv7vruv S X7 Tuv 7‘&? Tyv = @uvavruv S X7 Tuv 7&?

m Theorem [Candes, Recht ‘08]:

If there is a true matrix of rank k,
And, we observe at least
C kn'?1
n-“logn

random entries of true matrix

Then true matrix is recovered exactly with high probability via convex nuclear norm
minimization!
= Under certain conditions
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Nuclear Norm Minimization versus

_ Direct ‘Bilinear: Low Rank Solutions

= Nuclear norm minimization: mén Z(@uv — 7o)’ + A|O]]«
TU’U

Annoying because:

= Instead: min > (L Ry = 1) + Nl |LIF + Al IRI [
’ Tuv
Annoying because:
. 1 1
sut 101l = int {31121+ GlIRIE: © = L}

= So
= And

= Under certain conditions [Burer, Monteiro ‘04]
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What you need to know...
" JE
m Stochastic gradient descent for matrix
factorization

m Norm minimization as convex relaxation of rank
minimization
Trace norm for PSD matrices
Nuclear norm in general

m Intuitive relationship between nuclear norm
minimization and direct (bilinear) minimization
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Matrix factorization solutions can

. Rﬁ Hnintuitive...

= Many, many, many applications of matrix factorization

m E.g., in text data, can do topic modeling (alternative to LDA):

R’
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= Would like:

m But...

ooooooooooooo

10



Nonnegative Matrix Factorization
" I

R’

X =| L

m Just like before, but

i Lu v~ lTwuv 2 >\u L 2 )\,U 2
pin > (Lu Bo = ruo)” + MallLIE + Aol B

ruv

m Constrained optimization problem
Many, many, many, many solution methods... we’ll check out a simple one
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Projected Gradient
* JEE——

m Standard optimization:

Want to minimize: m(_%nf(@)

Use gradient updates:

et o — p,vrEO®)

m Constrained optimization:

Given convex set C of feasible solutions

Want to find minima within C: m(gn f(©)

0eC

m Projected gradient:

Take a gradient step (ignoring constraints):

Projection into feasible set:
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Projected Stochastic Gradient Descent

. for Nonneﬁative Matrix Factorization

. 1 9 Ay 2 Ay 2
;L Z(Lu "Ry —ru)” + 7”LHF + 7HRHF

Tuwv

m Gradient step observing r,, ignoring constraints:

égﬂ) (1- nt)\u)IM(j) - TItEth)
1(}t+1) (I —mAy) g}t) — ntEtLgf)

m Convex set:
m Projection step:

What you need to know...
" JEE——
m |[n many applications, want factors to be
nonnegative

m Corresponds to constrained optimization
problem

m Many possible approaches to solve, e.g.,
projected gradient
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Cold-Start Problem
" JEE
m Challenge: Cold-start problem (new movie or user)
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Cold-Start Problem More Formally
" JEE
m Consider a new user u’ and predicting that user’s ratings

No previous observations

Objective considered so far:

1 Ay Ay
min 5 Z(Lu Ry —ru)’ + 7||L||% + 7||RH%

Tuv

Optimal user factor:

Predicted user ratings:
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An Alternative Formulation
" JEE
m A simpler model for collaborative filtering
We would not have this issue if we assumed all users were identical

What about for new movies? What if we had side information?

What dimension should w be?
Fit linear model:

Minimize:
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Personalization
" BN

m If we don’t have any observations about a user, use wisdom of the crowd
Address cold-start problem

m Clearly, not all users are the same
m Just as in personalized click prediction, consider model with global and
user-specific parameters

= As we gain more information about the user, forget the crowd
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User Features...
" JEEE

m |n addition to movie features, may have information about the user:

m Combine with features of movie:

m Unified linear model:
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Feature-based Approach versus Matrix
Factorization
" JEE
m Feature-based approach:

Feature representation of user and movies fixed
Can address cold-start problem

m Matrix factorization approach:
Suffers from cold-start problem
User & movie features are learned from data

= A unified model:
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Unified Collaborative Filtering via SGD
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For w and w,:
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What you need to know...
* JE
m Cold-start problem

m Feature-based methods for collaborative filtering
Help address cold-start problem

m Unified approach
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Probabilistic Matrix Factorization (PMF)
“
m A generative process:
Pick user factors

Pick movie factors

For each (user,movie) pair observed:
= Pick rating as L, R, + noise

m Joint probability:

PMF Graphical Model
= JEE—

P(L,R| X) x P(L)P(R)P(X | L, R)

m  Graphically:
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Maximum A Posteriori for Matrix Completion
* JEE—
P(L,R|X) x P(L,R,X) = p(L)p(R)p(X | L, R)

-1 K -1 k -1
x e292 D=1 20i=1 Liieﬁ 2oty 20 Riieﬁ Z'ruv (LuRo—ru)?
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MAP versus Regularized Least-Squares

for Matrix Comﬁletion

m  MAP under Gaussian Model:
log P(L X) =
max log (L, R|X)

_%ZZL&_T;}ZZR&_% (Lu + Ry = 1yy)? + const

Tuv

m  |east-squares matrix completion with L, regularization:

o1 Au Ay

m Understanding as a probabilistic model is very useful! E.g.,
Change priors

Incorporate other sources of information or dependencies
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What you need to know...
" JEE
m Probabilistic model for collaborative filtering

Models, choice of priors
MAP equivalent to optimization for matrix completion
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