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Matrix Completion Problem
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Xi; known for black cells
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Matrix Completion via Rank Minimization
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m  Two issues:

Approximate Matrix Completion
" S

m  Minimize squared error: )
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Coordinate Descent for Matrix Factorization
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Minimizing Over User Factors
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Coordinate Descent for Matrix
Factorization: Alternating Least-Squares
min . U)Z i?Lu-RU o)+ X ML XR]

m Fix movie factors, optimize for user factors 9
4 O Independent least-squares over users @1 E (Lu R, — Tuv)
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Effect of Regularization "¢ 17
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What you need to know...
" JE
m Matrix completion problem for collaborative
filtering
m Over-determined -> low-rank approximation
m Rank minimization is NP-hard

m Minimize least-squares prediction for known
values for given rank of matrix
Must use regularization

m Coordinate descent algorithm = “Alternating
Least Squares”
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Stochastic Gradient Descent
= JE
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Local Optima v. Global Optima
" JEE—
m We are solving:
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m Which is NP-hard...
1 How do these things relate???
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Eigenvalue Decompositions for PSD Matrices
" JEE

= Given a (square) symmetric positive semidefinite matrix: & 0
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Generalizing the Trace Trick

m Non-square matrices ain’t got no trace

m For (square%ositive semidefinite matrices, matrix factorization: ).~ 0O
4 "
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m For rectangular matrices, singular value decomposition: (4VD>
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Nuclear Norm Minimization

m
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m _Optimization problem: (relacasion)
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m Both are convex problems!
(solved by semidefinite programming)
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Analysis of Nuclear Norm
" JEE

m Nuclear norm minimization = convex relaxation pfyrﬂ_r‘lylg\minimization:
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Then true matrix is recovered exactly with high probability via convex nuclear norm
minimization!
= Under certain conditions
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Nuclear Norm Minimization versus
Direct (Bilinear) Low Rank Solutions
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What you need to know...
" JEE—
m Stochastic gradient descent for matrix
factorization

m Norm minimization as convex relaxation of rank
minimization
Trace norm for PSD matrices
Nuclear norm in general

m Intuitive relationship between nuclear norm
minimization and direct (bilinear) minimization
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Matrix factorization solutions can

. Rﬁ Hnintuitive...

m Many, many, many applications of matrix factorization ;
y y y app every doc s & mixtare of topics
m E.g, in text data, can do topic modeling (alternative to LDA): wd( see
this
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Nonnegative Matrix Factorization
" I
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X =| L

m Just like before, but
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m Constrained optimization problem
Many, many, many, many solution methods... we’ll check out a simple one
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Projected Gradient
" JEE—

m Standard optimization:

Want to minimize: min f(©)

Usq\aadient updates:

elt+l) . o) _ mvf(@(t))

m Constrained optimization:

Given convex set C of feasible solutions

Want to find minima within C: nlin f(©)

0eC

m Projected gradient:
Take a gradient step (ignoring constraints):
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Projected Stochastic Gradient Descent

. for Nonneﬁative Matrix Factorization
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What you need to know...
" JEE—
m |[n many applications, want factors to be
nonnegative

m Corresponds to constrained optimization
problem

m Many possible approaches to solve, e.g.,
projected gradient
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Cold-Start Problem
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Cold-Start Problem More Formally
*
m Consider a new user u’ and predicting that user’s ratings

1 No previous observations fie
2 ank Lu’ *to £
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An Alternative Formulation
" JEE——
m A simpler model for collaborative filtering
1 We would not have this issue if we assumed all users were identical

AL all users shoved o Geatrg vector w
- W informed by all oS 4+ can use it L~

new user uw’
1 What about for new movies? What if we had side information? P
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Personalization
» S

m If we don’t have any observations about a user, use wisdom of the crowd
e ——
1 Address cold-start problem

Tor user w', predict  Cury X W‘¢{V)

m Clearly, not all users are the same ... shoved w s Song #isumphon
m Just as in personalized click prediction, consider model with global and
user-specific parameters
Considrr user-specif.c devianons  wu From
Ahe Crowd W
"=

oo = (wewa)e ¢(v)

'v:"‘ *e o

= As we gain more information about the user, forget the crowd
w“ movi inlo r”uA
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User Features...
= JEEE—

m |n addition to movie features, may have information about the user:

groy= (s, Fo,ofse AT LN

aqe  gender  gducation 1«0):
N B'g
Debn
m Combine with features of movie:
blowy = (4o, 99
Cvoss Featyces.. . )
m Unified linear model:

o = (Wt W) °¢("‘/V)
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Feature-based Approach versus Matrix
Factorization
" JEE
m Feature-based approach:

Feature representation of user and movies fixed
Can address cold-start problem

m Matrix factorization approach:
Suffers from cold-start problem
User & movie features are learned from data

= A unified model:
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Unified Collaborative Filtering via SGD
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m Gradient step observing r,,
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For w and w,:
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What you need to know...
" JE
m Cold-start problem

m Feature-based methods for collaborative filtering
Help address cold-start problem

m Unified approach
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