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Case Study 4: Collaborative Filtering 

Matrix Completion Problem 

n  Filling missing data?   
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Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X = Rows index users 
Columns index movies 
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Matrix Completion via Rank Minimization 

n  Given observed values: 

n  Find matrix 

n  Such that: 

n  But…  

n  Introduce bias:   

n  Two issues:  
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Approximate Matrix Completion 
n  Minimize squared error: 

¨  (Other loss functions are possible) 

n  Choose rank k: 

 
 
n  Optimization problem: 
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Coordinate Descent for Matrix Factorization 

n  Fix movie factors, optimize for user factors 

n  First observation:  
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min
L,R

X

(u,v):ruv 6=?

(Lu ·Rv � ruv)
2

Minimizing Over User Factors 
n  For each user u: 

n  In matrix form: 

n  Second observation: Solve by  
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min
Lu

X

v2Vu

(Lu ·Rv � ruv)
2
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Coordinate Descent for Matrix 
Factorization: Alternating Least-Squares 

n  Fix movie factors, optimize for user factors 
¨  Independent least-squares over users 

n  Fix user factors, optimize for movie factors 
¨  Independent least-squares over movies 

 
n  System may be underdetermined:  

n  Converges to 
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min
Rv

X

u2Uv

(Lu ·Rv � ruv)
2

min
Lu

X

v2Vu

(Lu ·Rv � ruv)
2

min
L,R

X

(u,v):ruv 6=?

(Lu ·Rv � ruv)
2

Effect of Regularization 
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X L
R’

=

min
L,R

X

(u,v):ruv 6=?

(Lu ·Rv � ruv)
2
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What you need to know…  

n  Matrix completion problem for collaborative 
filtering 

n  Over-determined -> low-rank approximation 
n  Rank minimization is NP-hard 
n  Minimize least-squares prediction for known 

values for given rank of matrix 
¨ Must use regularization 

n  Coordinate descent algorithm = “Alternating 
Least Squares” 
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Stochastic Gradient Descent 

n  Observe one rating at a time ruv  

n  Gradient observing ruv: 

n  Updates: 
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min
L,R

1

2

X

ruv

(Lu ·Rv � ruv)
2 +

�u

2
||L||2F +

�v

2
||R||2F

Local Optima v. Global Optima 

n  We are solving: 

n  We (kind of) wanted to solve: 

n  Which is NP-hard…  
¨  How do these things relate??? 
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min
L,R

X

ruv

(Lu ·Rv � ruv)
2 + �u||L||2F + �v||R||2F
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Eigenvalue Decompositions for PSD Matrices 

n  Given a (square) symmetric positive semidefinite matrix: 
¨  Eigenvalues:  

n  Thus rank is: 
 
n  Approximation:  

n  Property of trace: 

n  Thus, approximate rank minimization by: 
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Generalizing the Trace Trick 
n  Non-square matrices ain’t got no trace 
 
n  For (square) positive semidefinite matrices, matrix factorization: 

n  For rectangular matrices, singular value decomposition: 

 
n  Nuclear norm: 
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Nuclear Norm Minimization 
n  Optimization problem: 

n  Possible to relax equality constraints: 

n  Both are convex problems! 
(solved by semidefinite programming) 
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Analysis of Nuclear Norm 
n  Nuclear norm minimization = convex relaxation of rank minimization: 

n  Theorem [Candes, Recht ‘08]:   
¨  If there is a true matrix of rank k, 
¨  And, we observe at least 

 
 
 
random entries of true matrix 

¨  Then true matrix is recovered exactly with high probability via convex nuclear norm 
minimization! 

n  Under certain conditions 
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C k n1.2
log n

min
⇥

rank(⇥)

ruv = ⇥uv, 8ruv 2 X, ruv 6=?

min
⇥

||⇥||⇤

ruv = ⇥uv, 8ruv 2 X, ruv 6=?



9 

Nuclear Norm Minimization versus 
Direct (Bilinear) Low Rank Solutions 

n  Nuclear norm minimization: 

¨  Annoying because: 

 
n  Instead: 

 
¨  Annoying because: 
 
¨  But 

n  So 
n  And 

n  Under certain conditions [Burer, Monteiro ‘04] 
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min
⇥

X

ruv

(⇥uv � ruv)
2 + �||⇥||⇤

min
L,R

X

ruv

(Lu ·Rv � ruv)
2 + �u||L||2F + �v||R||2F

||⇥||⇤ = inf

⇢
min
L,R

1

2
||L||2F +

1

2
||R||2F : ⇥ = LR0

�

What you need to know…  

n  Stochastic gradient descent for matrix 
factorization 

n  Norm minimization as convex relaxation of rank 
minimization 
¨ Trace norm for PSD matrices 
¨ Nuclear norm in general 

n  Intuitive relationship between nuclear norm 
minimization and direct (bilinear) minimization 
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Case Study 4: Collaborative Filtering 

Matrix factorization solutions can 
be unintuitive… 

n  Many, many, many applications of matrix factorization 

n  E.g., in text data, can do topic modeling (alternative to LDA): 

n  Would like: 

n  But… 
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X L
R’

=
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Nonnegative Matrix Factorization 

n  Just like before, but 

n  Constrained optimization problem 
¨  Many, many, many, many solution methods… we’ll check out a simple one 
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X L
R’

=

min
L�0,R�0

X

ruv

(Lu ·Rv � ruv)
2 + �u||L||2F + �v||R||2F

Projected Gradient 
n  Standard optimization: 

¨  Want to minimize:  
¨  Use gradient updates:  

n  Constrained optimization: 
¨  Given convex set C of feasible solutions  
¨  Want to find minima within C: 

n  Projected gradient: 
¨  Take a gradient step (ignoring constraints): 
 
¨  Projection into feasible set:  
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min
⇥

f(⇥)

min
⇥

f(⇥)

⇥ 2 C

⇥(t+1)  ⇥(t) � ⌘trf(⇥(t))
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Projected Stochastic Gradient Descent 
for Nonnegative Matrix Factorization 

n  Gradient step observing ruv ignoring constraints: 

n  Convex set: 
n  Projection step:   
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min
L�0,R�0

1

2

X

ruv

(Lu ·Rv � ruv)
2 +

�u

2
||L||2F +

�v

2
||R||2F

"
L̃(t+1)
u

R̃(t+1)
v

#
 

"
(1� ⌘t�u)L

(t)
u � ⌘t✏tR

(t)
v

(1� ⌘t�v)R
(t)
v � ⌘t✏tL

(t)
u

#

What you need to know… 

n  In many applications, want factors to be 
nonnegative 

n  Corresponds to constrained optimization 
problem 

n  Many possible approaches to solve, e.g., 
projected gradient 
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Cold-Start Problem 

n  Challenge: Cold-start problem (new movie or user) 
n  Methods: use features of movie/user 
 

IN THEATERS 
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Cold-Start Problem More Formally 

n  Consider a new user u’ and predicting that user’s ratings 
¨  No previous observations 

¨  Objective considered so far: 

¨  Optimal user factor: 

¨  Predicted user ratings: 
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min
L,R

1

2

X

ruv

(Lu ·Rv � ruv)
2 +

�u

2
||L||2F +

�v

2
||R||2F

An Alternative Formulation 

n  A simpler model for collaborative filtering 
¨  We would not have this issue if we assumed all users were identical 

¨  What about for new movies?  What if we had side information? 

¨  What dimension should w be? 
¨  Fit linear model:  

¨  Minimize: 
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Personalization 
n  If we don’t have any observations about a user, use wisdom of the crowd 

¨  Address cold-start problem 

n  Clearly, not all users are the same 
n  Just as in personalized click prediction, consider model with global and 

user-specific parameters 

n  As we gain more information about the user, forget the crowd 
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User Features… 
n  In addition to movie features, may have information about the user: 

n  Combine with features of movie: 

n  Unified linear model: 
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Feature-based Approach versus Matrix 
Factorization 

n  Feature-based approach:  
¨  Feature representation of user and movies fixed 
¨  Can address cold-start problem 

n  Matrix factorization approach: 
¨  Suffers from cold-start problem 
¨  User & movie features are learned from data 

 
n  A unified model: 
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Unified Collaborative Filtering via SGD 

n  Gradient step observing ruv 
¨  For L,R  

¨  For w and wu: 
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min
L,R,w,{wu}u

1

2

X

ruv

(Lu ·Rv + (w + wu) · �(u, v)� ruv)
2

+
�u

2
||L||2F +

�v

2
||R||2F +

�w

2
||w||22 +

�wu

2

X

u

||wu||22

"
L(t+1)
u

R(t+1)
v

#
 

"
(1� ⌘t�u)L

(t)
u � ⌘t✏tR

(t)
v

(1� ⌘t�v)R
(t)
v � ⌘t✏tL

(t)
u

#
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What you need to know… 

n  Cold-start problem 

n  Feature-based methods for collaborative filtering 
¨ Help address cold-start problem 

n  Unified approach 
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