

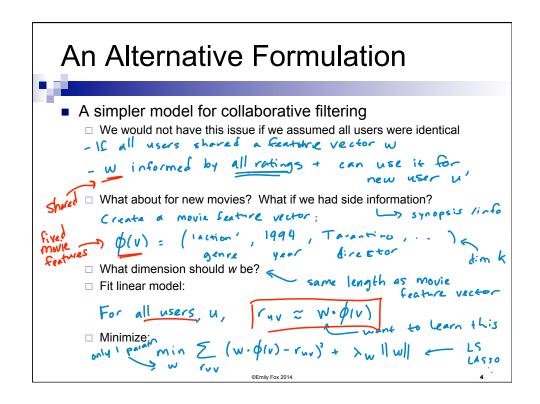
Consider a new user
$$u$$
) and predicting that user's ratings

No previous observations

No previous observations

Objective considered so far:

 $u'v = ?$
 $v'v = ?$



Personalization

■ If we don't have any observations about a user, use wisdom of the crowd

☐ Address cold-start problem

For user u', predict ru'v = w. of(v)

- Clearly, not all users are the same ... shared w is strong assumption
- Just as in personalized click prediction, consider model with global and user-specific parameters

Consider user-specific deviations we from
the crowd w

init to 0

The crowd work to 0

The crowd waser deviation from the crowd preference vector

As we gain more information about the user, forget the crowd

©Emily Fox 2014

User Features...

■ In addition to movie features, may have information about the user: •

d(u) = (25, F, 1/5c, At,)

age gender education grade
in Big

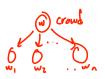
Data

Combine with features of movie:

 $\phi(v,v) = (\ldots, \phi(v), \ldots, \ldots, \phi(v), \ldots, \ldots)$ $cross \ Features \ldots)$

Unified linear model:

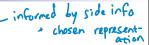
(w+ ww) . \$(u,v)



©Emily Fox 2014

Feature-based Approach versus Matrix **Factorization**

- Feature-based approach:
 - □ Feature representation of <u>user</u> and movies fixed
 - □ Can address cold-start problem



- Matrix factorization approach:
 - □ Suffers from cold-start problem
- A unified model: combine bath ideas

$$r_{uv} = L_u \cdot R_v + (w + w_u) \cdot \phi(u,v)$$

solve via:

ALS

SGD

©Emily Fox 2014

Unified Collaborative Filtering via SGD
$$\min_{L,R,w,\{w_u\}_u} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v + (w + w_u) \cdot \phi(u,v) - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2 + \frac{\lambda_w}{2} ||w||_2^2 + \frac{\lambda_w u}{2} \sum ||w_u||_2^2$$

- Gradient step observing $r_{uv} = e_{t} = l_{u}^{(t)} \cdot R_{v}^{(t)} + (w_{u}^{(t)} + w_{u}^{(t)}) \cdot \phi(u, v) c_{uv}^{(t)}$
 - For L,R $\left[\begin{array}{c} L_u^{(t+1)} \\ R_v^{(t+1)} \end{array} \right] \leftarrow \left[\begin{array}{c} (1-\eta_t\lambda_u)L_u^{(t)} \eta_t\epsilon_tR_v^{(t)} \\ (1-\eta_t\lambda_v)R_v^{(t)} \eta_t\epsilon_tL_u^{(t)} \end{array} \right] \begin{array}{c} \text{come as} \\ \text{before w/} \\ \text{new definition} \end{array}$
 - □ For w and w_u : $\nabla_w F^{(k)} = E_k \phi(u, v) + \lambda_w w^{(k)}$

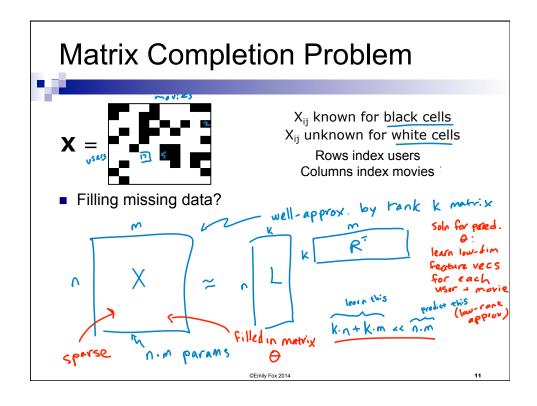
What you need to know...

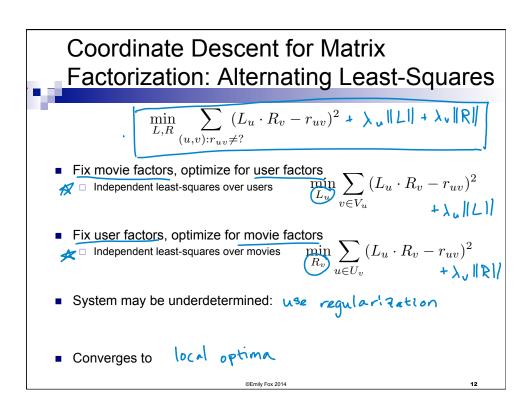
- Cold-start problem
- Feature-based methods for collaborative filtering ☐ Help address cold-start problem
- Unified approach

Case Study 4: Collaborative Filtering Connections with **Probabilistic Matrix Factorization** Machine Learning for Big Data CSE547/STAT548, University of Washington **Emily Fox**

©Emily Fox 2014

February 18th, 2014





Probabilistic Matrix Factorization (PMF)

A generative process:

Pick user factors

Pick movie, factors

Pick movie, factors

Pick rating as L_u^uR_v + noise

Pick rating as L_u^uR_v + noise

N(0,
$$\sigma_v^2$$
)

For each (user, movie) pair observed:

Pick rating as L_u^uR_v + noise

N(0, σ_v^2)

Pick rating as L_u^uR_v + noise

Pick rating as L_u^uR_v + noise

N(1, R_v)

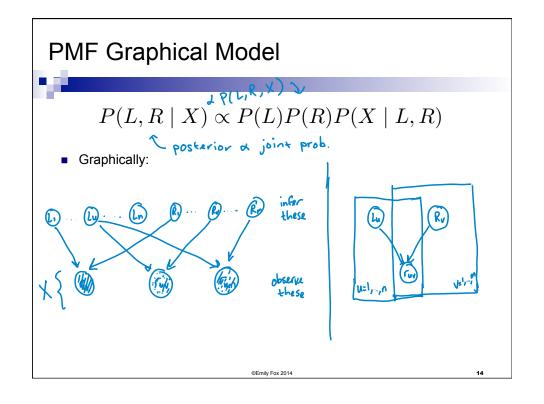
P(X|L, R)

N(X|L, R)

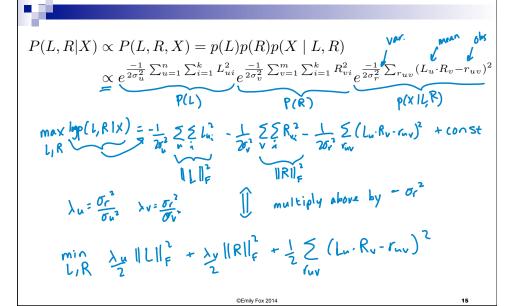
N(X|L, R)

N(X|L, R)

N(X|L, R)



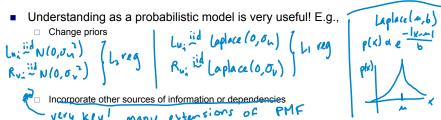
Maximum A Posteriori for Matrix Completion

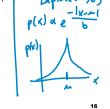


MAP versus Regularized Least-Squares for Matrix Completion

$$\max_{L,R} \log P(L, R \mid X) =$$

$$-\frac{1}{2\sigma_u^2} \sum_{u} \sum_{i} L_{u_i}^2 - \frac{1}{2\sigma_v^2} \sum_{v} \sum_{i} R_{v_i}^2 - \frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \text{const}$$





What you need to know...

- Probabilistic model for collaborative filtering
 - □ Models, choice of priors
 - ☐ MAP equivalent to optimization for matrix completion

©Emily Fox 2014

17

Case Study 4: Collaborative Filtering

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox

February 18th, 2014

©Emily Fox 2014

18

Posterior Computations

MAP estimation focuses on point estimation:

 $\hat{\theta}^{MAP} = \arg\max_{\theta} p(\theta \mid x)$

- What if we want a full characterization of the posterior?
 - Maintain a measure of uncertainty ☐ Estimators other than posterior mode (different loss functions)

Predictive distributions for future observations $p(x^{N+1} \mid x^1, ..., x^N) = \int p(x^{N+1} \mid \theta) p(\theta \mid x^1, ..., x^N) d\theta \quad \text{(erch.)}$ The lift about θ having seen obs. $x^1, ..., x^N$ Integrate over uncertainty in model params P(XN+1 | DMAP(X',...,XM)) & make pred w/ DMAP after Nobs.

 Often no closed form characterization (e.g., mixture models, PMF, etc.)

©Emily Fox 2014

full Bayesian approva Bayesian PMF Example place priors on Ø as well 1 ■ Latent user and movie factors: $L_{u} = N(M_{u}, \Sigma_{u}) \quad u = 1,..., n$ $R_{v} = N(M_{v}, \Sigma_{v}) \quad v = 1,..., m$ R_{v} ■ Observations (Lu'Ry, or) r_{uv} Hyperparameters: $\phi = \{M_u, \Sigma_u, M_v, \Sigma_v, \sigma_r^2\}$ $\phi_u \qquad \phi_v \qquad \phi_r \qquad \text{new user Imovie}$ Want to predict new movie rating: p(ruy | X, d) = \int p(ruy | Lu, Rr) p(L, R | X, d) dUR 7 ^ obs. ratings new rating

Bayesian PMF Example

$$p(r_{uv}^* \mid X, \phi) = \int p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

ANALYTICALLY INTRACTABLE!

• Monte Carlo methods:

$$App^{rox} = \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid X, \phi) dL dR$$

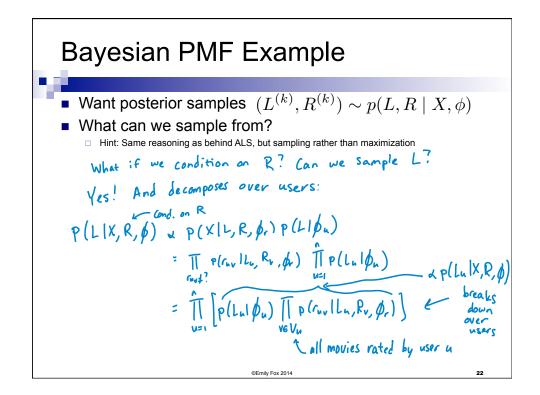
$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid X, \phi) \approx \frac{1}{N} \sum_{k=1}^{p} p(r_{uv}^* \mid X, \phi) dL dR$$

$$p(r_{uv}^* \mid$$



Bayesian PMF Example

For user u:
$$p(L_u \mid X, R, \phi_u) \propto p(L_u \mid \phi_u) \prod_{v \in V_u} p(r_{uv} \mid L_u, R_v, \phi_r)$$

$$= N(L_u \mid M_u, \Sigma_u) \prod_{v \in V_u} N(r_{uv} \mid L_u, R_v, \phi_r)$$

$$= N(L_u \mid M_u, \Sigma_u) \prod_{v \in V_u} V_v \times V_$$

```
Gibb) Sampling

Type of Markov chain Monte Carlo

(MCMC) approach

Want draws: (generically for n params \theta = (\theta_1, ..., \theta_n)

(\theta_1, ..., \theta_n) \sim TI(\theta) can the sample directly from TI

e.g. (L1,...,Ln, R1,...,Rm) X) ~ p(L,RIX)

Construct Markov chain whose steady state distribution is TI

Then, asymptotically correct ... eventually samples from the Markov chain are gamples from desired TI

Simplest case: (Gibbs)

For k = 1,..., N iter

Can use random order

for k = 1,..., N iter

Can use random order

(cond. on everything else

Cibbs assumes this "full conditional" has a closed-form that we can sample from
```

Bayesian PMF Gibbs Sampler

Outline of Bayesian PMF sampler

1. Init L(1), R(1)

2. For k.l,..., Niter

(i) Sample hyperparans
$$\beta^{(k)} = \sum_{k=1}^{k} k!$$
, $\beta^{(k)} = \sum_{k=1}^{k} k!$

(ii) For each user $u=1,...,n$ sample in parallel

 $L^{(k+1)} \sim P(Lu \mid X, R^{(k)}, \beta^{(k)})$

(iii) For each movie $v=1,...,m$ sample in parallel

 $R^{(k+1)} \sim P(Rv \mid X, L^{(k+1)}, \beta^{(k)})$

Very similar to ideas of ALS (systematically)

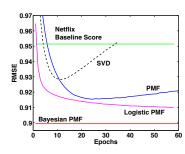
©Emily Fox 2014

25

Bayesian PMF Results

From Salakhutdinov and Mnih, ICML 2008

- Netflix data with:
 - \Box Training set = 100,480,507 ratings from 480,189 users on 17,770 movie titles
 - □ Validation set = 1,408,395 ratings.
 - □ Test set = 2,817,131 user/movie pairs with the ratings withheld.



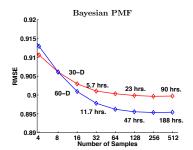


Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

©Emily Fox 2014

26

Bayesian PMF Results

From Salakhutdinov and Mnih, ICML 2008

 Bayesian model better controls for overfitting by averaging over possible parameters (instead of committing to one)

D	Valid. RMSE		%	Test RMSE		%
	PMF	BPMF	Inc.	PMF	BPMF	Inc.
30	0.9154	0.8994	1.74	0.9188	0.9029	1.73
40	0.9135	0.8968	1.83	0.9170	0.9002	1.83
60	0.9150	0.8954	2.14	0.9185	0.8989	2.13
150	0.9178	0.8931	2.69	0.9211	0.8965	2.67
300	0.9231	0.8920	3.37	0.9265	0.8954	3.36

 $Table\ 1.$ Performance of Bayesian PMF (BPMF) and linear PMF on Netflix validation and test sets.

©Emily Fox 2014

27

What you need to know...

- Idea of full posterior inference vs. MAP estimation
- Gibbs sampling as an MCMC approach
- Example of inference in Bayesian probabilistic matrix factorization model

©Emily Fox 2014

28