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Case Study 4: Collaborative Filtering 

Probabilistic Matrix Factorization (PMF) 

n  A generative process: 
¨  Pick user factors 

¨  Pick movie factors 

¨  For each (user,movie) pair observed: 
n  Pick rating as Lu Rv + noise 

n  Joint probability: 
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PMF Graphical Model 

n  Graphically: 
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P (L,R | X) / P (L)P (R)P (X | L,R)

MAP versus Regularized Least-Squares 
for Matrix Completion 

n  MAP under Gaussian Model: 

 
n  Least-squares matrix completion with L2 regularization: 

 
n  Understanding as a probabilistic model is very useful! E.g., 

¨  Change priors 

¨  Incorporate other sources of information or dependencies 
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n  MAP estimation focuses on point estimation: 

n  What if we want a full characterization of the posterior? 
¨  Maintain a measure of uncertainty 
¨  Estimators other than posterior mode (different loss functions) 
¨  Predictive distributions for future observations 

n  Often no closed-form characterization (e.g., mixture models, 
PMF, etc.) 

Posterior Computations 

ˆ

✓

MAP
= argmax

✓
p(✓ | x)
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n  Latent user and movie factors: 

n  Observations 
n  Hyperparameters: 

n  Want to predict new movie rating: 

Bayesian PMF Example 

Lu Rv

ruv
u = 1, . . . , n

v = 1, . . . ,m
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n  Monte Carlo methods: 

n  Ideally: 

Bayesian PMF Example 

p(r⇤uv | X,�) =

Z
p(r⇤uv | Lu, Rv)p(L,R | X,�)dLdR

Lu Rv

ruv
u = 1, . . . , n

v = 1, . . . ,m

�u �v

�r
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n  Outline of Bayesian PMF sampler 

Bayesian PMF Gibbs Sampler 
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n  Netflix data with: 
¨  Training set = 100,480,507 ratings from 480,189 users on 17,770 movie titles  
¨  Validation set = 1,408,395 ratings.  
¨  Test set = 2,817,131 user/movie pairs with the ratings withheld. 

Bayesian PMF Results 

Bayesian Probabilistic Matrix Factorization using MCMC
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Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the
Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs,
or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a
function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

4.2. Training PMF models

For comparison, we have trained a variety of linear
PMF models using MAP, choosing their regularization
parameters using the validation set. In addition to lin-
ear PMF models, we also trained logistic PMF mod-
els, in which we pass the dot product between user-
and movie-specific feature vectors through the logistic
function σ(x) = 1/(1 + exp(−x)) to bound the range
of predictions:

p(R|U, V, α) =
N
∏

i=1

M
∏

j=1

[

N (Rij |σ(UT
i Vj), α

−1)

]Iij

. (15)

The ratings 1, ..., 5 are mapped to the interval [0, 1]
using the function t(x) = (x − 1)/4, so that the range
of valid rating values matches the range of predictions
our model can make. Logistic PMF models can some-
times provide slightly better results than their linear
counterparts.

To speed up training, instead of performing full batch
learning, we subdivided the Netflix data into mini-
batches of size 100,000 (user/movie/rating triples) and
updated the feature vectors after each mini-batch. We
used a learning rate of 0.005 and a momentum of 0.9
for training the linear as well as logistic PMF models.

4.3. Training Bayesian PMF models

We initialized the Gibbs sampler by setting the model
parameters U and V to their MAP estimates obtained
by training a linear PMF model. We also set µ0 =
0, ν0 = D, and W0 to the identity matrix, for both
user and movie hyperpriors. The observation noise

precision α was fixed at 2. The predictive distribution
was computed using Eq. 10 by running the Gibbs

sampler with samples {U (k)
i , V (k)

j } collected after each
full Gibbs step.

4.4. Results

In our first experiment, we compared a Bayesian PMF
model to an SVD model, a linear PMF model, and a
logistic PMF model, all using 30D feature vectors. The
SVD model was trained to minimize the sum-squared
distance to the observed entries of the target matrix,
with no regularization applied to the feature vectors.
Note that this model can be seen as a PMF model
trained using maximum likelihood (ML). For the PMF
models, the regularization parameters λU and λV were
set to 0.002. Predictive performance of these models
on the validation set is shown in Fig. 2 (left panel).
The mean of the predictive distribution of the Bayesian
PMF model achieves an RMSE of 0.8994, compared to
an RMSE of 0.9174 of a moderately regularized linear
PMF model, an improvement of over 1.7%.

The logistic PMF model does slightly outperform its
linear counterpart, achieving an RMSE of 0.9097.
However, its performance is still considerably worse
than that of the Bayesian PMF model. A simple
SVD achieves an RMSE of about 0.9280 and after
about 10 epochs begins to overfit heavily. This ex-
periment clearly demonstrates that SVD and MAP-
trained PMF models can overfit and that the pre-
dictive accuracy can be improved by integrating out
model parameters and hyperparameters.

From Salakhutdinov 
and Mnih, ICML 2008  
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n  Bayesian model better controls for overfitting by 
averaging over possible parameters (instead of 
committing to one) 

Bayesian PMF Results 

Bayesian Probabilistic Matrix Factorization using MCMC
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Figure 3. Samples from the posterior over the user and movie feature vectors generated by each step of the Gibbs
sampler. The two dimensions with the highest variance are shown for two users and two movies. The first 800 samples
were discarded as “burn-in”.

D Valid. RMSE % Test RMSE %
PMF BPMF Inc. PMF BPMF Inc.

30 0.9154 0.8994 1.74 0.9188 0.9029 1.73
40 0.9135 0.8968 1.83 0.9170 0.9002 1.83
60 0.9150 0.8954 2.14 0.9185 0.8989 2.13
150 0.9178 0.8931 2.69 0.9211 0.8965 2.67
300 0.9231 0.8920 3.37 0.9265 0.8954 3.36

Table 1. Performance of Bayesian PMF (BPMF) and lin-
ear PMF on Netflix validation and test sets.

We than trained larger PMF models with D = 40 and
D = 60. Capacity control for such models becomes a
rather challenging task. For example, a PMF model
with D = 60 has approximately 30 million parameters.
Searching for appropriate values of the regularization
coefficients becomes a very computationally expensive
task. Table 1 further shows that for the 60-dimensional
feature vectors, Bayesian PMF outperforms its MAP
counterpart by over 2%. We should also point out
that even the simplest possible Bayesian extension of
the PMF model, where Gamma priors are placed over
the precision hyperparameters αU and αV (see Fig. 1,
left panel), significantly outperforms the MAP-trained
PMF models, even though it does not perform as well

as the Bayesian PMF models.

It is interesting to observe that as the feature di-
mensionality grows, the performance accuracy for the
MAP-trained PMF models does not improve, and con-
trolling overfitting becomes a critical issue. The pre-
dictive accuracy of the Bayesian PMF models, how-
ever, steadily improves as the model complexity grows.
Inspired by this result, we experimented with Bayesian
PMF models with D = 150 and D = 300 feature
vectors. Note that these models have about 75 and
150 million parameters, and running the Gibbs sam-
pler becomes computationally much more expensive.
Nonetheless, the validation set RMSEs for the two
models were 0.8931 and 0.8920. Table 1 shows that
these models not only significantly outperform their
MAP counterparts but also outperform Bayesian PMF
models that have fewer parameters. These results
clearly show that the Bayesian approach does not re-
quire limiting the complexity of the model based on the
number of the training samples. In practice, however,
we will be limited by the available computer resources.

For completeness, we also report the performance re-
sults on the Netflix test set. These numbers were ob-

From Salakhutdinov 
and Mnih, ICML 2008  



6 

What you need to know… 

n  Idea of full posterior inference vs. MAP 
estimation 

n  Gibbs sampling as an MCMC approach 
n  Example of inference in Bayesian probabilistic 

matrix factorization model 

©Emily Fox 2014 11 
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Matrix Factorization and 
Probabilistic LFMs for  
Network Modeling 

Machine Learning for Big Data 
CSE547/STAT548, University of Washington 

Emily Fox 
February 20th, 2014 

©Emily Fox 2014 

Case Study 4: Collaborative Filtering 



7 

©Emily Fox 2014 13 

n  Structure of network data 

Network Data 
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n  Similarities to Netflix data: 
¨  Matrix 
¨  High-dimensional 
¨  Sparse 

n  Differences 
¨  Square 
¨  Binary 

Properties of Data Source 
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n  Vanilla matrix factorization approach: 

n  What to return for link prediction? 

 
n  Slightly fancier: 

Matrix Factorization for Network Data 
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n  Assume features (covariates) of the user       or relationship 

n  Each user has a “position” in a k-dimensional latent space 

n  Probability of link:  

Probabilistic Latent Space Models 
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n  Probability of link:  

n  Bayesian approach: 
¨  Place prior on user factors and regression coefficients 
¨  Place hyperprior on user factor hyperparameters 

n  Many other options and extensions (e.g., can use GMM for Lu  à 
clustering of users in the latent space) 

Probabilistic Latent Space Models 

log odds p(ruv = 1 | Lu, Lv, xuv,�) = �0 + �

T
xuv � |Lu � Lv|

log odds p(ruv = 1 | Lu, Lv, xuv,�) = �0 + �

T
xuv � |LT

uLv|

What you need to know… 

n  Representation of network data as a matrix 
¨ Adjacency matrix 

n  Similarities and differences between adjacency 
matrices and general matrix-valued data  

n  Matrix factorization approaches for network data 
¨ Just use standard MF and threshold output 
¨  Introduce link functions to constrain predicted values 

n  Probabilistic latent space models 
¨ Model link probabilities using distance between latent 

factors 
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