Case Study 4: Collaborative Filtering

Collaborative Filtering
Matrix Completion
Alternating Least Squares

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox

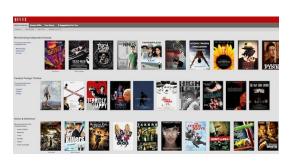
February 11th, 2014

©Emily Fox 2014

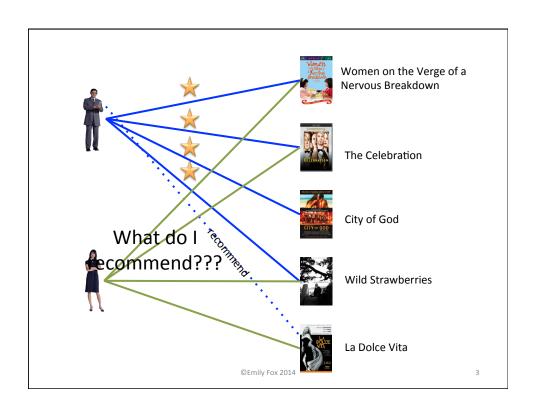
1

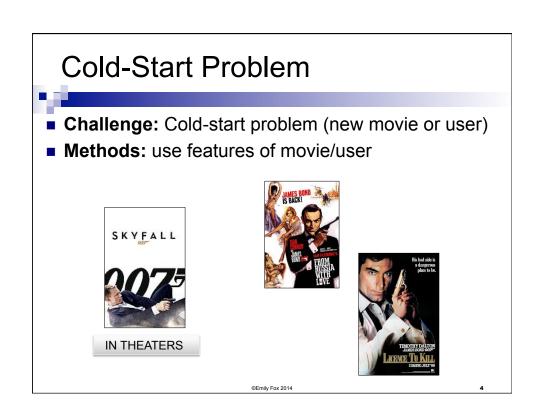
Collaborative Filtering

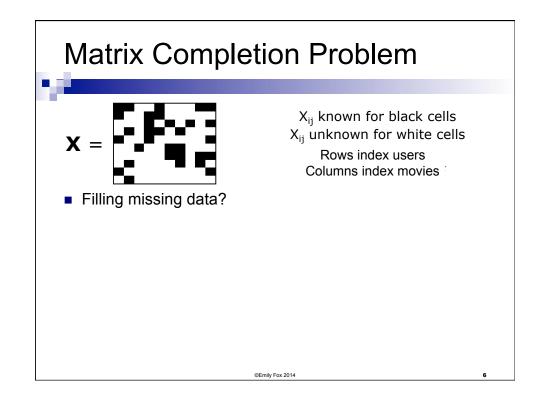
- Goal: Find movies of interest to a user based on movies watched by the user and others
- Methods: matrix factorization, GraphLab

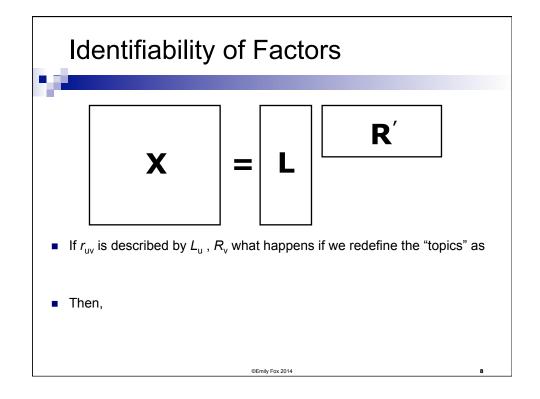


©Emily Fox 2014

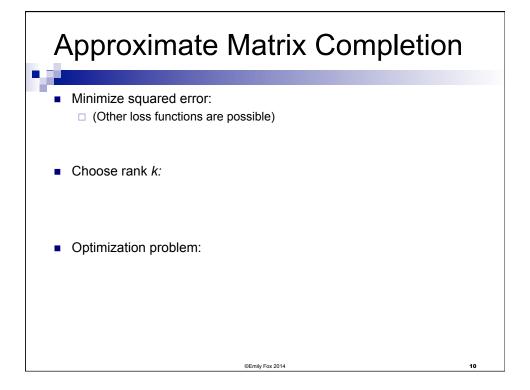








Matrix Completion via Rank Minimization Given observed values: Find matrix Such that: But... Introduce bias:



Coordinate Descent for Matrix Factorization

$$\min_{L,R} \sum_{(u,v): r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2$$

- Fix movie factors, optimize for user factors
- First observation:

©Emily Fox 2014

11

Minimizing Over User Factors

- For each user \emph{u} : $\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v r_{uv})^2$
- In matrix form:

Second observation: Solve by

©Emily Fox 2014

Coordinate Descent for Matrix Factorization: Alternating Least-Squares

$$\min_{L,R} \sum_{(u,v): r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2$$

- Fix movie factors, optimize for user factors $\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v r_{uv})^2$
- $\begin{array}{c} \blacksquare \quad \text{Fix user factors, optimize for movie factors} \\ \blacksquare \quad \text{Independent least-squares over movies} \qquad \min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v r_{uv})^2 \\ \end{array}$
- System may be underdetermined:
- Converges to

©Emily Fox 2014

13

Effect of Regularization

$$\min_{L,R} \sum_{(u,v):r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

X

 \mathbf{R}'

©Emily Fox 2014

What you need to know...

- Matrix completion problem for collaborative filtering
- Over-determined -> low-rank approximation
- Rank minimization is NP-hard
- Minimize least-squares prediction for known values for given rank of matrix
 - ☐ Must use regularization
- Coordinate descent algorithm = "Alternating Least Squares"

©Emily Fox 2014

15

Case Study 4: Collaborative Filtering SGD for Matrix Completion Matrix-norm Minimization Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 11th, 2014

Stochastic Gradient Descent

$$\min_{L,R} \frac{1}{2} \sum_{r} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2$$

- Observe one rating at a time r_{uv}
- Gradient observing r_{uv}:
- Updates:

©Emily Fox 2014

17

Local Optima v. Global Optima

We are solving:

are solving:
$$\min_{L,R} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \lambda_u ||L||_F^2 + \lambda_v ||R||_F^2$$

- We (kind of) wanted to solve:
- Which is NP-hard...
 - □ How do these things relate???

©Emily Fox 2014

Eigenvalue Decompositions for PSD Matrices

- Given a (square) symmetric positive semidefinite matrix:
 - □ Eigenvalues:
- Thus rank is:
- Approximation:
- Property of trace:
- Thus, approximate rank minimization by:

©Emily Fox 2014

19

Generalizing the Trace Trick

- Non-square matrices ain't got no trace
- For (square) positive semidefinite matrices, matrix factorization:
- For rectangular matrices, singular value decomposition:
- Nuclear norm:

©Emily Fox 2014

Nuclear Norm Minimization

- Optimization problem:
- Possible to relax equality constraints:
- Both are convex problems! (solved by semidefinite programming)

©Emily Fox 2014

Analysis of Nuclear Norm

Nuclear norm minimization = convex relaxation of rank minimization:

$$\min_{\Theta} \ rank(\Theta)$$

$$\min_{\Theta} \, ||\Theta||_*$$

$$r_{uv} = \Theta_{uv}, \forall r_{uv} \in X, r_{uv} \neq ?$$
 $r_{uv} = \Theta_{uv}, \forall r_{uv} \in X, r_{uv} \neq ?$

$$r_{uv} = \Theta_{uv}, \forall r_{uv} \in X, r_{uv} \neq ?$$

- Theorem [Candes, Recht '08]:
 - \Box If there is a true matrix of rank k,
 - And, we observe at least

$$C k n^{1.2} \log n$$

random entries of true matrix

- □ Then true matrix is recovered exactly with high probability via convex nuclear norm minimization!
 - Under certain conditions

Nuclear Norm Minimization versus Direct (Bilinear) Low Rank Solutions

- Nuclear norm minimization: $\min_{\Theta} \sum_{r_{uv}} (\Theta_{uv} r_{uv})^2 + \lambda ||\Theta||_*$
 - Annoying because:
- $\qquad \text{Instead: } \min_{L,R} \sum_{r_{uv}} (L_u \cdot R_v r_{uv})^2 + \lambda_u ||L||_F^2 + \lambda_v ||R||_F^2$
 - □ Annoying because:
 - $\ \ \, ||\Theta||_* = \inf\left\{ \min_{L,R} \frac{1}{2} ||L||_F^2 + \frac{1}{2} ||R||_F^2 : \Theta = LR' \right\}$
 - Sc
 - And
 - Under certain conditions [Burer, Monteiro '04]

23

What you need to know...

- Stochastic gradient descent for matrix factorization
- Norm minimization as convex relaxation of rank minimization
 - □ Trace norm for PSD matrices
 - □ Nuclear norm in general
- Intuitive relationship between nuclear norm minimization and direct (bilinear) minimization

©Emily Fox 2014