Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Machine Learning for Big Data
CSES47/STAT548, University of Washington

Emily Fox
January 21st, 2014

©Emily Fox 2014 1

Task 1: Find Similar Documents
= JEE

: w2’
= To begin... A v el
Input: Query article X Nf'fc(zg
Output: Set of k similar articles D

rrrrrrrrrr

ooooooooooooo

k-Nearest Neighbor
" JEE
m Articles X = {z!,...,2"}, 2'cR?)
——|
= Query: z € R?

= k-NN
Goal: le k artides in clo;eS{' Lo X

Af{(c\c S
Formulation:
- NN
\JN ? y X S
‘n ot in 3"\@

st ¥ x* eX\X““ <— Cnesrest K

é(x;«lﬂ > N\axch\(xw;/ X)

©Em ily Fox 2014 3

Issues with Search Techniques
" JEE
m Naive approach:
Brute force search

Given a query point X) o
Scan through each point z" s .

O(N) distance computations
per 1-NN query!
O(Nlogk) per k-NN query!

107
/& \(u? ?{apc 1‘079 V- kD o
* Ancerki "4 ' >

a?27? ‘\"e\op‘)k 33 Distance Computations

m What if N
(and many queries)

©Emily Fox 2014 4

KD-Trees

" JEE
’LA L)(AMP(‘(J
m Smarter approach: kd-trees -
Structured organization of * el
documents . ..
= Recursively partitions points into axis oo e °
aligned boxes. p . ° *
Enables more efficient pruning of : .
search space e e *
= Examine nearby points first.
= Ignore any points that are further than 0
the nearest point found so far. / \
m kd-trees work “well” in “low- q 9
medium” dimensions d/ \b J 5
We'll get back to this... SHELHLEY &Yy
S8y &Y
KD-Tree Construction
" JEE _—— 7 5
%('(}A !\M ' ’V
% ° \ Wl'“ Avf
% le QO Ii c,?\‘-{' v -
ot { .
. . /
o0 o O

N VDD D

o, *ee =¢,u RIS iR

3

m Keep one additional piece of information at each node:
The (tight) bounds of the points at or below this node.

©Emily Fox 2014 6

Nearest Neighbor with KD Trees
" JEE]
A — (eq aricle)

L] T A

RIS AN
. . :.: o iR o‘d‘o\b do(b‘o o d\b\o

m Traverse the tree looking for the nearest neighbor of the
query point.

©Emily Fox 2014

Nearest Neighbor with KD Trees

. . Nistonce to Clogest
(f\ P Y S fof
. . SN CS/o\b /o
e o o o B
* .;:) * C{ \b CS/ \b ~:—-(5/ \b
boe NN e o Le
= When we reach a leaf node: in thic lox (UM)? NO

Compute the distance to each point in the node.

P

ooooooooooooo

Nearest Neighbor with KD Trees

0o o '< .'). o/\o
RN
R AP RN

m Then backtrack and try the other branch at each node
visited

©Emily Fox 2014

Nearest Neighbor with KD Trees

" J—
—— now U):(/[astf nearest NZ:jMM/

@JC ot O/O\O

S o/ég;bbo/ogz/o\b
S 6™ T

m Each time a new closest node is found, update the A
distance bound Dist- feem X 4o closest P of boun "~

ooooooooooooo

Nearest Neighbor with KD Trees

e®e . / |{|‘t‘(.5£5('lb"l lpalL ’:L

(290 IS(—M(Q

. . @QL./ / \ Crom >(
oo o ‘\.’0 w

.. * * d/\b / loo)(o

I N R AR) ‘j@”

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor

No M’odc in thir box (a«,«ll be e WM.

ooooooooooooo

. ..é-. //\\
— i e ov

B A Y:L.F é\o

/

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor

ooooooooooooo

Nearest Neighbor with KD Trees

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014 13

Complexity

m For (nearly) balanced, binary trees...
m Construction
1 Size: 2“-' — 0(N)

o Depth: (], N)
1 Median + sendgpoints left right: O(N\ ok every (¢w., of tree

+
11 Construction time: ()(Ul”ﬁ”) (Smars)
= 1-NN query
0 Traverse down tree to starting point: 0“05")) 0‘)0 o led "4&
1 Maximum backtrack and traverse: (J(N) worst case

01 Complexity range: 0(|,,J N) - O(L))

m Under some i distribution of points, we get |
O(logN) but(exponential in d {see citations in reading) w‘eﬂz

©Emily Fox 2014 14

Complexity

[T H N
=l \%
:;H%@H Lt wa
i e
o . o %
rened men ru.nAJ on| A‘&w
(closer %o DU%M\) : 0(“\7

©Emily Fox 2014

Complexity for N Queries
" JEE
m Ask for nearest neighbor to each document

‘\) querizs
m Brute force 1-NN: O(Nz)
m kd-trees: o(N lﬁﬁm 5 (5(“\')

T
prentely |
\uf";" sy nge

ooooooooooooo

Inspections vs. N and d
" JEE

Lx?oﬂmﬁ'\a\ ia A‘

loa W
. y
S,
.0
J; o
im
K
Ql- 2
9|,
:‘k "
N 4

{,(»’!\R“

K-NN with KD Trees

AETT A

m“ . é&ﬂ&
S o5 By

m Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

m Complexity is: O(k\b%\l)

©Emily Fox 2014

Approximate K-NN with KD Trees
" S

e | * © W hefe
o | o

e,

<7 < o

. R i o,cs’\b\b dp’\b\b o 5’b\t

Before: Prune when distance to bounding box >
Now: Prune when distance to bounding box > 7/ for &7 l
m Wil praine mor wed, but can guarantee that if we return a neighbor
at distance 77, then there is no neighbor
In practice this bound is loose...Can be closer to optimal.
Saves Iotigjiearch time at little cost in quality of nearest neighbor.

©Emily Fox 2014 19

Wrapping Up — Important Points
" S

kd-trees

m Tons of variants
On construction of trees (heuristics for splitting, stopping, representing branches...)
Other representational data structures for fast NN search (e.g., ball trees,...)
———

Nearest Neighbor Search
m Distance metric and data representation are crucial to answer returned

For both... ; pportans
m High dimensional spaces are hard! &

Number of kd-tree searches can be e)mw‘

= Rule of thumb... N >>29... Typically useless.

Distances are sensitive to irrelevant features
= Most dimensions are just noise - Everything equidistant (i.e., everything is far away)

* Need technigue to leam whatfpafuces 2re imparigabfor your task

©Emily Fox 2014 20

10

" JEE

m Document retrieval task
Document representation (bag of words)
tf-idf

m Nearest neighbor search
Formulation
Different distance metrics and sensitivity to choice
Challenges with large N

m kd-trees for nearest neighbor search
Construction of tree
NN search algorithm using tree

Complexity of construction and query
Challenges with large d

©Emily Fox 2014 21

Acknowledgment
" JEE
m This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
http://www.cs.cmu.edu/~awm/tutorials
m In particular, see:

http://grist.caltech.edu/sc4devo!.../files/
scd4devo scalable datamining.ppt

©Emily Fox 2014 22

11

Locality-Sensitive Hashing
Random Projections
for NN Search

Machine Learning for Big Data
CSES47/STAT548, University of Washington

Emily Fox
January 21st, 2014

©Emily Fox 2014 23

Using Hashing to Find Neighbors

“ JEE
m KD-trees are cool, but..
Non-trivial to |mplement efficiently é—
— 4 bg?
Problems with high-dimensional data é—
m Approximate neighbor finding...
Don’t find exact neighbor, but that's OK for many apps, especially with Big Data

n WhatlfwecouldusefLMDmaﬂs l'\ 'X -—‘){\, ‘) f

Hash elements into huckets: l\/'l’ LAM“&,O)

»\(""‘/) Y & 1(;{ CA(\Aﬂ-s"‘
T - ble where
Look for neighbors that fall in same bucket as x: Wwe \Ll.l?

. . (A 2\[(/7
haze , Forall y e TIA> i) ook %m
= But, by design...

? (h(¥)* HY))=7‘F1 vy’
aven f A‘(,‘l) e low 7’% \/\ l"&})

ooooooooooooo

12

Locality Sensitive Hashing (LSH)

" S g2
. .)l
m A LSH function h satisfies (for example), for "“\‘ﬂ(x'l)
some saiﬁﬁ ahty function d, for r>0, a>1: { \ov
Cd(x,x’) < r, then P(h(x)=h(x’)) is high
S d(x.x) > ar, then P(h(x)=h(x’)) is low @
C(in be;tween, not sure about p)robability)
’) bama’
bt h(10bar dons
\I‘(0 ,—\[‘Znow
i i)
T R
,L lﬂ(unﬂyl)
now \ook Gor ?h '/\as l:\fnj o same bin
Random Projection lllustration
- 4 4 -
tad — iJe;J
?rpjta(- on \{:
i-p&ﬁ:“_)____- -
ks/ome OVCfi‘ﬁ
m Pick a random vector v: bt MBYY
01 Independent Gaussian coordinates Q(,P“r'”{‘e
V; YN0, N
m Preserves separability for most vectors P"’}“’" o~ v,
o Gets better with.more random vectors A

13

Multiple Random Projections: x¢ K

_ AEEroximatinﬁ Dot Products ~ #/2F
v‘"~x ure)

= Pick m random vectors v(: ¢(y): voly| * -

0 Independent Gaussian coordinates . + -

ProjLckon VLekors NS CEVITRY!
m Approximate dot products: V2«
[l Cheaper, e.g., learp in smaller‘m dim‘ensioqal space)
\('l s L ¢(¥5~) = = Zﬂ(v""xy(v"’.y)
m Only need logarithmic number of dimensions!
1 N data points, approximate dot-product within £>0:

m:0<log2N> c T have ‘o'ﬂ JA,&A/
€ N_a Vuy l‘-fﬁ'(/

m But all sparsity is lost wk only need ‘Oﬂ” \r/:;.,‘g
vf«) {)Lrl. Jusc w\S\ even I x s Sf“"l,
<)) eX i O v’?‘ 9{(%) i$ hot sparie @’}‘P)

©Emily Fox 2014 27

LSH Example: Sparser Random Projection
for Dot products

Q(o’, ection
Veckor

kkln)
close *° 0 VJI'\P

v ..v\5)

(b }’?. % 941 |
= Pick random vectors v@) # N(0, 1))
= Simple 0/1 projection: fi,(x) = i 1 £ S\T\(\IM-X)ZO

0 i€ siglv¥x)<0
m Now, each vector is approximated by a bit-vector

(£)=(0,0, \,0, \,‘/ l, O)
m Dot-product approximation: H mmD§$-’< (¢M,¢[y))

XY . ¢S B,y = Cos
Ty =5 (“ m

©Emily Fox 2014 28

14

LSH for Approximate Neighbor Finding
"

m Very similar elements fall in exactly same bin:

X ‘r[¢(¥)j qrn biv veckl ke inkeou
T: (&D—v—r—rrﬂ m . _—
27 bS5t - enfle ;

: . Yeos)

s And, ?earby bins are also nearby: 0 é?:'\\lf‘v
\n keems of Uammnnj Dist. z CDS(E H‘M};“_\\

m (¢ll‘,'o]]

m Simple neighbor finding with LSH:
0 For bins b of increasing hamming distance to h(x): S(X,Y) A(jl«\

= Look for neighbors of x in bin b =)¢ ~
[Stop when run out of time Closest xy & 0
~— ’-='> H‘Mf‘l bisf =0

= Pick m such that N/2m is “smallish” (i ?ramm) S K,y in sane

L—" L '
©Emily Fox 2014 29

Hash |s: Even Sparser LSH for

i . Ic nels UNG Xo
Learmnﬁ ASIDE: How do hosh er ;r"}r‘ late %o,

m Two big problems with random projections: V(;)
1 Data is sparse, but random projection can be a lot less spr k (;U\CL Ve ckofs)
1 You have to sample m huge random projection vectors n ‘,arf-“!
= And, we still have the problem with new dimensions, e.gsfiew words "“, ‘{0

——
Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections

Pick 2 hash functions: { 5
1 h: Justlike in Min-Count hashing | %)(> 1 s, M

0 &: Sign hash function i P XS 14‘ ‘/’l g

= Removes the bias found in Min-Count hashing (see homework)

Define a “kernel”, a projection ¢ for x:
) Fo/pujc(\ Mj’. 2200)(J/ aJt(o kin L\[ﬂ; f[J\Xo

B - f’l'("}lﬁ T
. ply= 7 0%

©Emily Fox 2014 30

15

Hash Kernels, Random Projections and

- _Spar3|ty bix) = D €0
m Hash Kernel gs a rand rojection: SO that
X: (0,0 0%1'1009\‘5‘1? JO " felle \:b Gow before e
T N s e aO_Cg_.Z 606 sk ker e
¢(¥'= ! P(‘[,Sbf‘n ?raA

h(:7 §(): -

m Random projection vector for coordinate i of ¢;: l"(‘lih‘o’):: 7 5('!;».5'}‘4I

“ bn-tero .
\/() mos\:ly 6 M kcrt_, vl g ?H/-\

RSN ALY

/ J) V(;)" (0,00""0 __(1r|’0’0)
m Implicitly define projection b)_/‘g_anc&so no'need’to compufe apriori

‘o and automatically deal with new dimensions

'y Sparsity of ¢, if x has s non-zero coordinates:
’ s '7 I .
llou many dimes Jocs)(J' ghow ol " ¢["3~ 0"(—'-' at L‘[J‘-)

2 sparsity of X oS 2 seprsidy of (}S(x\

'9 OG 'bﬁ B 4‘y’ ©Emily Fox 2014 31

What you need to know
" JEE
m Locality-Sensitive Hashing (LSH): nearby points-hash-ta the same or
nearby bins in xecms of [lmonia, A6

m LSH use random projections J
Only O(log N/€2) vectors needed
But vectors and results are not sparse

m Use LSH for nearest neighbors by mapping elements into bins
Bin index is defined by bit vector from LSH
Find nearest neighbors by going through bins

m Hash kernels:
Sparse representation for feature vectors

Very simple, use two hash function
= Can even use one hash function, and take least significant bit to define §

Quickly generate projection ¢(x)
Learn in projected space

©Emily Fox 2014 32

16

