
1

1

Task Description:
Finding Similar Documents

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Emily Fox
January 21st, 2014

©Emily Fox 2014

Case Study 2: Document Retrieval

Task 1: Find Similar Documents

©Emily Fox 2014 2

n  To begin…
¨  Input: Query article
¨ Output: Set of k similar articles

2

k-Nearest Neighbor

©Emily Fox 2014 3

n  Articles

n  Query:

n  k-NN
¨  Goal:

¨  Formulation:

X = {x1
, . . . , x

N}, x

i 2 Rd

x 2 Rd

n  Naïve approach:
Brute force search
¨  Given a query point
¨  Scan through each point
¨  O(N) distance computations

per 1-NN query!
¨  O(Nlogk) per k-NN query!

n  What if N is huge???
(and many queries)

Issues with Search Techniques

©Emily Fox 2014 4

33 Distance Computations	

x

x

i

3

n  Smarter approach: kd-trees
¨  Structured organization of

documents
n  Recursively partitions points into axis

aligned boxes.

¨  Enables more efficient pruning of
search space

n  Examine nearby points first.
n  Ignore any points that are further than

the nearest point found so far.

n  kd-trees work “well” in “low-
medium” dimensions
¨  We’ll get back to this…

KD-Trees

©Emily Fox 2014 5

KD-Tree Construction

n  Keep one additional piece of information at each node:
¨  The (tight) bounds of the points at or below this node.

6 ©Emily Fox 2014

4

Nearest Neighbor with KD Trees

7

n  Traverse the tree looking for the nearest neighbor of the
query point.

©Emily Fox 2014

Nearest Neighbor with KD Trees

8

n  When we reach a leaf node:
¨  Compute the distance to each point in the node.

©Emily Fox 2014

5

Nearest Neighbor with KD Trees

9

n  Then backtrack and try the other branch at each node
visited

©Emily Fox 2014

Nearest Neighbor with KD Trees

10

n  Each time a new closest node is found, update the
distance bound

©Emily Fox 2014

6

Nearest Neighbor with KD Trees

11

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

Nearest Neighbor with KD Trees

12

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

7

Nearest Neighbor with KD Trees

13

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2014

n  For (nearly) balanced, binary trees...
n  Construction

¨  Size:
¨  Depth:
¨  Median + send points left right:
¨  Construction time:

n  1-NN query
¨  Traverse down tree to starting point:
¨  Maximum backtrack and traverse:
¨  Complexity range:

n  Under some assumptions on distribution of points, we get
O(logN) but exponential in d (see citations in reading)

14

Complexity

©Emily Fox 2014

8

15

Complexity

©Emily Fox 2014

n  Ask for nearest neighbor to each document

n  Brute force 1-NN:

n  kd-trees:

16

Complexity for N Queries

©Emily Fox 2014

9

17

Inspections vs. N and d

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

©Emily Fox 2014

K-NN with KD Trees

18

n  Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

n  Complexity is:

©Emily Fox 2014

10

19 ©Emily Fox 2014

Approximate K-NN with KD Trees

n  Before: Prune when distance to bounding box >
n  Now: Prune when distance to bounding box >
n  Will prune more than allowed, but can guarantee that if we return a neighbor

at distance , then there is no neighbor closer than .
n  In practice this bound is loose…Can be closer to optimal.
n  Saves lots of search time at little cost in quality of nearest neighbor.

r/↵r

Wrapping Up – Important Points

20

kd-trees
n  Tons of variants

¨  On construction of trees (heuristics for splitting, stopping, representing branches…)
¨  Other representational data structures for fast NN search (e.g., ball trees,…)

Nearest Neighbor Search
n  Distance metric and data representation are crucial to answer returned

For both…
n  High dimensional spaces are hard!

¨  Number of kd-tree searches can be exponential in dimension
n  Rule of thumb… N >> 2d… Typically useless.

¨  Distances are sensitive to irrelevant features
n  Most dimensions are just noise à Everything equidistant (i.e., everything is far away)
n  Need technique to learn what features are important for your task

©Emily Fox 2014

11

What you need to know

n  Document retrieval task
¨  Document representation (bag of words)
¨  tf-idf

n  Nearest neighbor search
¨  Formulation
¨  Different distance metrics and sensitivity to choice
¨  Challenges with large N

n  kd-trees for nearest neighbor search

¨  Construction of tree
¨  NN search algorithm using tree
¨  Complexity of construction and query
¨  Challenges with large d

©Emily Fox 2014 21

©Emily Fox 2014 22

Acknowledgment

n  This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
¨ http://www.cs.cmu.edu/~awm/tutorials

n  In particular, see:
¨ http://grist.caltech.edu/sc4devo/.../files/

sc4devo_scalable_datamining.ppt

12

23

Locality-Sensitive Hashing
Random Projections
for NN Search

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Emily Fox
January 21st, 2014

©Emily Fox 2014

Using Hashing to Find Neighbors
n  KD-trees are cool, but…

¨  Non-trivial to implement efficiently
¨  Problems with high-dimensional data

n  Approximate neighbor finding…
¨  Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data

n  What if we could use hash functions:
¨  Hash elements into buckets:

¨  Look for neighbors that fall in same bucket as x:

n  But, by design…

©Emily Fox 2014 24

13

Locality Sensitive Hashing (LSH)

n  A LSH function h satisfies (for example), for
some similarity function d, for r>0, α>1:
¨ d(x,x’) ≤ r, then P(h(x)=h(x’)) is high
¨ d(x,x’) > α.r, then P(h(x)=h(x’)) is low
¨  (in between, not sure about probability)

©Emily Fox 2014 25

Random Projection Illustration

n  Pick a random vector v:
¨  Independent Gaussian coordinates

n  Preserves separability for most vectors
¨  Gets better with more random vectors

©Emily Fox 2014 26

14

Multiple Random Projections:
Approximating Dot Products

n  Pick m random vectors v(i):
¨  Independent Gaussian coordinates

n  Approximate dot products:
¨  Cheaper, e.g., learn in smaller m dimensional space

n  Only need logarithmic number of dimensions!
¨  N data points, approximate dot-product within ε>0:

n  But all sparsity is lost

©Emily Fox 2014 27

m = O
✓
logN

✏2

◆

LSH Example: Sparser Random Projection
for Dot products

n  Pick random vectors v(i)

n  Simple 0/1 projection: hi(x) =

n  Now, each vector is approximated by a bit-vector

n  Dot-product approximation:

©Emily Fox 2014 28

15

LSH for Approximate Neighbor Finding

n  Very similar elements fall in exactly same bin:

n  And, nearby bins are also nearby:

n  Simple neighbor finding with LSH:
¨  For bins b of increasing hamming distance to h(x):

n  Look for neighbors of x in bin b

¨  Stop when run out of time

n  Pick m such that N/2m is “smallish”

©Emily Fox 2014 29

Hash Kernels: Even Sparser LSH for
Learning

n  Two big problems with random projections:
¨  Data is sparse, but random projection can be a lot less sparse
¨  You have to sample m huge random projection vectors

n  And, we still have the problem with new dimensions, e.g., new words

n  Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections
n  Pick 2 hash functions:

¨  h : Just like in Min-Count hashing

¨  ξ : Sign hash function
n  Removes the bias found in Min-Count hashing (see homework)

n  Define a “kernel”, a projection ϕ for x:

©Emily Fox 2014 30

16

Hash Kernels, Random Projections and
Sparsity

n  Hash Kernel as a random projection:

n  Random projection vector for coordinate i of ϕi:

n  Implicitly define projection by h and ξ, so no need to compute apriori
and automatically deal with new dimensions

n  Sparsity of ϕ, if x has s non-zero coordinates:

©Emily Fox 2014 31

�i(x) =
X

j:h(j)=i

⇠(j)xj

What you need to know
n  Locality-Sensitive Hashing (LSH): nearby points hash to the same or

nearby bins
n  LSH use random projections

¨  Only O(log N/ε2) vectors needed
¨  But vectors and results are not sparse

n  Use LSH for nearest neighbors by mapping elements into bins
¨  Bin index is defined by bit vector from LSH
¨  Find nearest neighbors by going through bins

n  Hash kernels:
¨  Sparse representation for feature vectors
¨  Very simple, use two hash function

n  Can even use one hash function, and take least significant bit to define ξ

¨  Quickly generate projection ϕ(x)
¨  Learn in projected space

©Emily Fox 2014 32

