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Case Study 2: Document Retrieval 

Task 1: Find Similar Documents 
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n  To begin… 
¨  Input: Query article  
¨ Output: Set of k similar articles 
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k-Nearest Neighbor 
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n  Articles 

n  Query:  

n  k-NN 
¨  Goal:  

¨  Formulation: 

X = {x1
, . . . , x

N}, x

i 2 Rd

x 2 Rd

n  Naïve approach:  
Brute force search 
¨  Given a query point 
¨  Scan through each point 
¨  O(N) distance computations 

per 1-NN query! 
¨  O(Nlogk) per k-NN query! 

 

n  What if N is huge??? 
(and many queries) 

 

Issues with Search Techniques 
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33 Distance Computations	
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n  Smarter approach: kd-trees 
¨  Structured organization of 

documents 
n  Recursively partitions points into axis 

aligned boxes. 

¨  Enables more efficient pruning of 
search space 

n  Examine nearby points first. 
n  Ignore any points that are further than 

the nearest point found so far. 

n  kd-trees work “well” in “low-
medium” dimensions 
¨  We’ll get back to this… 

KD-Trees 

©Emily Fox 2014 5 

KD-Tree Construction 

n  Keep one additional piece of information at each node: 
¨   The (tight) bounds of the points at or below this node. 
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Nearest Neighbor with KD Trees 
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n  Traverse the tree looking for the nearest neighbor of the 
query point. 
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Nearest Neighbor with KD Trees 
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n  When we reach a leaf node:  
¨  Compute the distance to each point in the node. 
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Nearest Neighbor with KD Trees 
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n  Then backtrack and try the other branch at each node 
visited 
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Nearest Neighbor with KD Trees 
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n  Each time a new closest node is found, update the 
distance bound 
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Nearest Neighbor with KD Trees 

11 

n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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Nearest Neighbor with KD Trees 
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n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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Nearest Neighbor with KD Trees 
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n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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n  For (nearly) balanced, binary trees... 
n  Construction 

¨  Size: 
¨  Depth:  
¨  Median + send points left right: 
¨  Construction time:  

n  1-NN query 
¨  Traverse down tree to starting point: 
¨  Maximum backtrack and traverse: 
¨  Complexity range: 

n  Under some assumptions on distribution of points, we get 
O(logN) but exponential in d (see citations in reading) 
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Complexity 
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Complexity 
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n  Ask for nearest neighbor to each document 

n  Brute force 1-NN: 

n  kd-trees: 

16 

Complexity for N Queries 
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Inspections vs. N and d 
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K-NN with KD Trees 
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n  Exactly the same algorithm, but maintain distance as 
distance to furthest of current k nearest neighbors 

n  Complexity is: 
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Approximate K-NN with KD Trees 

n  Before: Prune when distance to bounding box >  
n  Now: Prune when distance to bounding box >  
n  Will prune more than allowed, but can guarantee that if we return a neighbor 

at distance   , then there is no neighbor closer than         . 
n  In practice this bound is loose…Can be closer to optimal. 
n  Saves lots of search time at little cost in quality of nearest neighbor. 

r/↵r

Wrapping Up – Important Points 
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kd-trees 
n  Tons of variants 

¨  On construction of trees (heuristics for splitting, stopping, representing branches…) 
¨  Other representational data structures for fast NN search (e.g., ball trees,…) 

 
Nearest Neighbor Search 
n  Distance metric and data representation are crucial to answer returned 
 
For both… 
n  High dimensional spaces are hard! 

¨  Number of kd-tree searches can be exponential in dimension 
n  Rule of thumb…  N >> 2d… Typically useless. 

¨  Distances are sensitive to irrelevant features  
n  Most dimensions are just noise à Everything equidistant (i.e., everything is far away) 
n  Need technique to learn what features are important for your task 
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What you need to know 

n  Document retrieval task 
¨  Document representation (bag of words) 
¨  tf-idf 

n  Nearest neighbor search 
¨  Formulation 
¨  Different distance metrics and sensitivity to choice 
¨  Challenges with large N 

n  kd-trees for nearest neighbor search 

¨  Construction of tree 
¨  NN search algorithm using tree 
¨  Complexity of construction and query 
¨  Challenges with large d 
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Using Hashing to Find Neighbors 
n  KD-trees are cool, but… 

¨  Non-trivial to implement efficiently 
¨  Problems with high-dimensional data 

n  Approximate neighbor finding… 
¨  Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data 

n  What if we could use hash functions: 
¨  Hash elements into buckets: 

¨  Look for neighbors that fall in same bucket as x: 

n  But, by design… 
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Locality Sensitive Hashing (LSH) 

n  A LSH function h satisfies (for example), for 
some similarity function d, for r>0, α>1: 
¨ d(x,x’) ≤ r, then P(h(x)=h(x’)) is high 
¨ d(x,x’) > α.r, then P(h(x)=h(x’)) is low 
¨  (in between, not sure about probability) 

©Emily Fox 2014 25 

Random Projection Illustration 

n  Pick a random vector v: 
¨  Independent Gaussian coordinates 

n  Preserves separability for most vectors 
¨  Gets better with more random vectors 
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Multiple Random Projections: 
Approximating Dot Products 

n  Pick m random vectors v(i): 
¨  Independent Gaussian coordinates 

n  Approximate dot products: 
¨  Cheaper, e.g., learn in smaller m dimensional space 

n  Only need logarithmic number of dimensions! 
¨  N data points, approximate dot-product within ε>0: 

 

n  But all sparsity is lost 
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m = O
✓
logN

✏2

◆

LSH Example: Sparser Random Projection 
for Dot products 

n  Pick random vectors v(i) 

n  Simple 0/1 projection: hi(x) =  

n  Now, each vector is approximated by a bit-vector 

n  Dot-product approximation: 
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LSH for Approximate Neighbor Finding 

n  Very similar elements fall in exactly same bin: 

n  And, nearby bins are also nearby: 

n  Simple neighbor finding with LSH: 
¨  For bins b of increasing hamming distance to h(x): 

n  Look for neighbors of x in bin b 

¨  Stop when run out of time 

n  Pick m such that N/2m is “smallish” 
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Hash Kernels: Even Sparser LSH for 
Learning 

n  Two big problems with random projections: 
¨  Data is sparse, but random projection can be a lot less sparse 
¨  You have to sample m huge random projection vectors 

n  And, we still have the problem with new dimensions, e.g., new words 

n  Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections 
n  Pick 2 hash functions: 

¨  h :  Just like in Min-Count hashing 

¨  ξ : Sign hash function 
n  Removes the bias found in Min-Count hashing (see homework) 

n  Define a “kernel”, a projection ϕ for x:  
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Hash Kernels, Random Projections and 
Sparsity 

n  Hash Kernel as a random projection: 

n  Random projection vector for coordinate i of ϕi: 

n  Implicitly define projection by h and ξ, so no need to compute apriori 
and automatically deal with new dimensions 

n  Sparsity of ϕ, if x has s non-zero coordinates: 
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�i(x) =
X

j:h(j)=i

⇠(j)xj

What you need to know 
n  Locality-Sensitive Hashing (LSH): nearby points hash to the same or 

nearby bins 
n  LSH use random projections 

¨  Only O(log N/ε2) vectors needed 
¨  But vectors and results are not sparse 

n  Use LSH for nearest neighbors by mapping elements into bins 
¨  Bin index is defined by bit vector from LSH 
¨  Find nearest neighbors by going through bins 

n  Hash kernels: 
¨  Sparse representation for feature vectors 
¨  Very simple, use two hash function 

n  Can even use one hash function, and take least significant bit to define ξ 

¨  Quickly generate projection ϕ(x) 
¨  Learn in projected space 
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