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Ad Placement Strategies

m Companies bid on ad prices

| WhICh ad WInS7 (many simplifications here)
Naively:

But:

Instead:
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Key Task: Estimating Click Probabilities
* JEEE
m \What is the probability that user i will click on ad j

m Not important just for ads:
Optimize search results
Suggest news articles
Recommend products

m Methods much more general, useful for:
Classification
Regression
Density estimation
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Learning Problem for Click Prediction
"

m  Prediction task:

m Features:

m Data:
Batch:

Online:

m  Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision
trees, boosting,...)
Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Logistic 1
function

Logistic Regression  rsigmoia) 1+ (-

" S -
m Learn P(Y|X) directly -
-1 Assume a particular functional form ..

1 Sigmoid applied to a linear function ..
of the data: o2

1

o

P(Y =0|X,W) = 1T exp(uwg + 5 wiXy) - 5

Features can be discrete or continuous!
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Very convenient!
" S

1
1+ exp(wo + X w;i X;)

P(Y =0|X =< Xq,..Xn>) =

linear
classification
implies 10 rule!
P(Yy =1|X
n——= = X
Py =olx) o 2w
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Digression: Logistic regression more

generally
= S

m Logistic regression in more general case, where

Yin{y....Yg}
for k<R . X
P(Y = | X) = exp(wyo + > q wgi X;)

14 Zf”;ll exp(wjo + X7 q w;;i X;)

for k=R (normalization, so no weights for this class)
1

1+ Y1 exp(wjo + X g wyiX;)

P(Y = yg|X) =

Features can be discrete or continuous!
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Loss function: Conditional Likelihood
" S

m Have a bunch of iid data of the form:

m Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N . .
In P(Dy | Dx,w) = Y InP(y/ | x?, w)
i=1
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Expressing Conditional Log Likelihood

" PO = ) = L cen o + 5w

I(w)=)In P/ |xI,w) POV = 1, w) = _22P(wo + X, wiXy)
5 ’ 1+ exp(wg + X wiX;)

Uw) =) ¢ ImPY =1x/,w)+ (1 -3/ ) In P(Y = 0]x/, w)
j

d d
=> Yo+ Y wial) ~In (1 +exp(wo + ) wia] >>
7 i=1 =1
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Maximizing Conditional Log Likelihood
" S
(w) = InHP(yj|xj,w)

J
d d
S SYIUIED ST (SPSES ytety
j =1

=1

Good news: I(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize
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Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol ol
Gradient: Vwl(w) = [ (w) . (w)
owg Own,

]/

Update rule: Aw — nvwl(W)

(t+1) ) (® ol(w)
w, +n
ow;
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)
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Gradient Ascent for LR
= JEEE

Gradient ascent algorithm: iterate until change < ¢

w(()t+1) - w(()t) + nz[yﬂ' —P(Y) =1, W)
J

Fori=1,...,d,

WD D 4yl P = 10
J

repeat
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Regularized Conditional Log Likelihood
" JEE—

m If data is linearly separable, weights go to infinity
m Leads to overfitting - Penalize large weights

m Add regularization penalty, e.g., L,:
¢(w)=In H P(y’
J

x?,w)) = Allwl|3

2

m Practical note about wy:
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Standard v. Regularized Updates
" SN

m Maximum conditional likelihood estimate

N
* J | xJ
w* = argmaxIn |Jl:[lP(y |x,w)‘|

WD @ 4 nzxg[yj — Py =1|x),w)]

J

m Regularized maximum conditional likelihood estimate

w”* = arg maxIn lH P(ijj,w))] - AZ w?

7 >0

w§t+1) _ wi(t)_l_77 {_)‘wz(t) + sz[y] _ F)(Yj =1 ‘ xj,VSB]}
J
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Stopping criterion
- _
lnHP T, w)) = M wl[3
2

m Regularized logistic regression is strongly concave
Negative second derivative bounded away from zero:

m Strong concavity (convexity) is super helpful!!

m For example, for strongly concave /(w):

t(w?) = l(w )_2/\IIW( w3
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Convergence rates for gradient

_ descent/ascent
N
m Number of Iterations to get to accuracy

(w*) —l(w) < e

m If func Lipschitz: O(1/€2)
m If gradient of func Lipschitz: O(1/e)

m If func is strongly convex: O(In(1/g))
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Challenge 1: Complexity of

. Comﬁuting gradients

m What's the cost of a gradient update step for LR???

w§t+1) - wz(t)_i_n {_sz(t) + ng[yj —P(YI=1| xj’v%]}
J
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Challenge 2: Data is streaming
" JE

m Assumption thus far: Batch data

m But, click prediction is a streaming data task:

User enters query, and ad must be selected:
= Observe xj, and must predict yi

User either clicks or doesn’t click on ad:
= Label yi is revealed afterwards
Google gets a reward if user clicks on ad

Weights must be updated for next time:
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Learning Problems as Expectations
" JEE

m  Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

N
1 .
- J
Ip(w) = N g l(w,x7)
Jj=1
m However, we should really minimize expected loss on all data:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)dx

m  So, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations
" S
m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)ﬁ(w,x)dx
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)

" JEE
m “True” gradient: VE(W) = Fy [Vﬁ(w,x)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent:

_ general case

m Given a stochastic function of parameters:
Want to find maximum

m Start from w(©®

m Repeat until convergence:
Get a sample data point xt
Update parameters:

m  Works on the online learning setting!
m  Complexity of each gradient step is constant in number of examples!
m In general, step size changes with iterations
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Stochastic Gradient Ascent for

_ Loaistic Reﬁression

m Logistic loss as a stochastic function:
Ex [6(w,x)] = Ex [In P(y|x, w) — A||w|[3]
2

m Batch gradient ascent updates:

N
1 Ve (i :
wi w4 {—Awﬁ” ty o P = 1|x<f>,w<“>1}

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wﬁt) + 1 {—)\wgt) + .rgt) " — Py =1x, W(t))]}
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Convergence rate of SGD
" JEE
m Theorem:
(see Nemirovski et al ‘09 from readings)

Let fbe a strongly convex stochastic function
Assume gradient of fis Lipschitz continuous and bounded

Then, for step sizes:

The expected loss decreases as O(1/1):

©Emily Fox 2014

24

12



Convergence rates for gradient

_ _descent/ascent versus SGD
o
m  Number of lterations to get to accuracy

(w*) —Ll(w) < e

m  Gradient descent:
If func is strongly convex: O(In(1/€)) iterations

m  Stochastic gradient descent:
If func is strongly convex: O(1/e) iterations

m  Seems exponentially worse, but much more subtle:

Total running time, e.g., for logistic regression:
= Gradient descent:
= SGD:
= SGD can win when we have a lot of data

And, when analyzing true error, situation even more subtle... expected
running time about the same, see readings
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Motivati ng AdaGrad (Duchi, Hazan, Singer 2011)

* JEE
m Assuming w € Rd, standard stochastic (sub)gradient
descent updates are of the form:

wz(tH) — ’wﬁt) — NGt,i

m Should all features share the same learning rate?

m Often have high-dimensional feature spaces
Many features are irrelevant
Rare features are often very informative

m Adagrad provides a feature-specific adaptive learning rate by
incorporating knowledge of the geometry of past observations
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Why Adapt to Geometry?

® Frequent, irrelevant
® Infrequent, predictive
® Infrequent, predictive
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Ty | Te2 | T3
1 0 0

.5 0 1

-. 1 0
% 8 8 Examples from
. Duchi et al.

ISMP 2012

]:'l g-) 8 slides

-5 0 1

Not All Features are Created Equal

* JEEE——
m Examples:

High-dimensional image features
Text data: !

The most unsung birthday
in American business and
technological history
this year may be the 50th
anniversary of the Xerox
914 photocopier.?

@The Atlantic, July/August 2010.

Images from Duchi et al. ISMP 2012 slides
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Projected Gradient ..
" JEE—

m Brief aside...

<~ wEt) — NGt,i

m Consider an arbitrary feature space w € W}/

m If w € )V, can use projected gradient for (sub)gradient
descent

Wt —
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Regret Minimization
" S

m How do we assess the performance of an online algorithm?

m Algorithm iteratively predicts W(t)
m Incur loss ft(W(t))

m Regret:
What is the total incurred loss of algorithm relative to the best
choice of w that could have been made retrospectively

R(T) = th(W(t)) - V‘}g‘f/Vth(W)
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Regret Bounds for Standard SGD
" S

m Standard projected gradient stochastic updates:

(t+1) _ i _(w® _ 2
w(t+D) = arg min ||w — (w') —ng,)|[3

m Standard regret bound:

T T
« 1 « n
;ft(w(t))_ft(w ) < %HW“) - W H§+§;Hgt\|§
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Projected Gradient using Mahalanobis
" S

m Standard projected gradient stochastic updates:

w(ttD) = arg min |lw — (w®) —ng,)|[3

m What if instead of an L, metric for projection, we considered
the Mahalanobis norm

wlttD) = arg min [|w — (w — A7 )%
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Mahalanobis Regret Bounds
" S

wl+) = arg min [Jw — (w) — A~ g,)|4

m What A to choose?

m Regret bound now:
T 1 . T

(t)y * - (1) ]2 i 2
;:1 Je(w) = fi(w™) < 277Hw w4+ 5 ;:1 [lgel[a-1

m What if we minimize upper bound on regret w.r.t. A in hindsight?
T
. -1
min ; (g6, A" gr)
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Mahalanobis Regret Minimization
" S

m Objective:
T
i At i - <
mjnt_zl <gt, gt> subject to A = 0,tr(A) < C

m Solution:

T
A=c (Z gtgtT>
t=1

1
2

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

m A defines the norm of the metric space we should be operating in
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AdaGrad Algorithm

w1 = arg min |[w — (W(t) —nA" g%
7 _ weWw

m Attime {, estimate optimal (sub)gradient modification A by

¢ 2
At = (Z ng7T>
T=1

m For dlarge, A, is computationally intensive to compute. Instead,

m Then, algorithm is a simple modification of normal updates:

(t+1) _ : () 1 \)12
w Y = arg min [[w — (W — ndiag(A:) ™ 90)l[giag 4,
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AdaGrad in Euclidean Space

" JEEE
m For W=R%,

m For each feature dimension,

t+1 t
wz( = w,f ) - Nt,iGt,i
where
Nt,i =
m Thatis
' t+1 t n
w£+)ew§)——t 297:,2‘
ZTzl gT,z'

m Each feature dimension has it's own learning rate!
Adapts with ¢
Takes geometry of the past observations into account
Primary role of n is determining rate the first time a feature is encountered
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AdaGrad Theoretical Guarantees
" S
m AdaGrad regret bound:

T d
Z fe(w®™) = fi(w*) < 2Rs Z 9175
=1

1=1

|2

m S0, what does this mean in practice?

m Many cool examples. This really is used in practice!
m Let’s just examine one...
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AdaGrad Theoretical Example
" S

m Expect to out-perform when gradient vectors are sparse
m SVM hinge loss example:

fr(w) =[1 - y' <XtaW>]+ where X' € {-1,0, 1}d

m If x{ # 0 with probability oc =, o >1

_ T -
1 ||w _
E N " wO | = f(wh =0 ( 2 . max{log d,d'~*/? )
_f (T ; ) f(w) T {log }
m Previously best known method:

E|f (%;W(t)> —f(w")=0 (H"r/*%oo \/E>
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Neural Network Learning
" JSEE——

m Very non-convex problem, but use SGD methods anyway
f(a;€) = log (1 +exp (([p({x1,&1)) -+ p({zk, &k))], o))

1
Accuracy on Test Set pla) = 1+ exp(a)

>

Average Frame Accuracy (%)

“ p((21,61) )
: T @)
—©— Downpour SGD
3 Sandbiastr Lpras G & & & &
° Time tE%ours) *
(Dean et al. 2012)
Distributed, d = 1.7 - 10° parameters. SGD and AdaGrad use 80 Images from Duchi et
machines (1000 cores), L-BFGS uses 800 (10000 cores) al. ISMP 2012 slides
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What you should know about Logistic

. Reﬁression ‘LR: and Click Prediction

m Click prediction problem:
Estimate probability of clicking
Can be modeled as logistic regression

m Logistic regression model: Linear model
m Gradient ascent to optimize conditional likelihood
m Overfitting + regularization
m Regularized optimization
Convergence rates and stopping criterion

m Stochastic gradient ascent for large/streaming data
Convergence rates of SGD

m AdaGrad motivation, derivation, and algorithm
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