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Case Study 1: Estimating Click Probabilities 

Ad Placement Strategies 

n  Companies bid on ad prices 

n  Which ad wins? (many simplifications here) 
¨  Naively:  

¨  But: 

¨  Instead: 
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Key Task: Estimating Click Probabilities 

n  What is the probability that user i will click on ad j 

n  Not important just for ads: 
¨ Optimize search results 
¨ Suggest news articles 
¨ Recommend products 

n  Methods much more general, useful for: 
¨ Classification 
¨ Regression  
¨ Density estimation 
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Learning Problem for Click Prediction 

n  Prediction task: 
 
n  Features: 

 
 
 
n  Data: 

¨  Batch: 
 
 
¨  Online: 

 
n  Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision 

trees, boosting,…) 
¨  Focus on logistic regression; captures main concepts, ideas generalize to other approaches 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨ Assume a particular functional form 
¨ Sigmoid applied to a linear function 

of the data: 

Z 

Features can be discrete or continuous! 
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Very convenient! 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {y1,…,yR} 

 for k<R 
 
 
 

 for k=R (normalization, so no weights for this class) 
 
 
 

Features can be discrete or continuous! 
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Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 
n  Discriminative (logistic regression) loss function: 

 Conditional Data Likelihood 

8 ©Emily Fox 2014 



5 

Expressing Conditional Log Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent much better (see reading) 

Gradient: 

Step size, η>0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i = 1,…,d,  

 

 

repeat    
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Regularized Conditional Log Likelihood 

n  If data is linearly separable, weights go to infinity 
n  Leads to overfitting à Penalize large weights 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Stopping criterion 

n  Regularized logistic regression is strongly concave 
¨  Negative second derivative bounded away from zero: 

n  Strong concavity (convexity) is super helpful!! 

n  For example, for strongly concave l(w): 
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Convergence rates for gradient 
descent/ascent 

n  Number of Iterations to get to accuracy 

n  If func Lipschitz: O(1/ϵ2) 

n  If gradient of func Lipschitz: O(1/ϵ) 

n  If func is strongly convex: O(ln(1/ϵ)) 
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Challenge 1: Complexity of 
computing gradients 

n  What’s the cost of a gradient update step for LR??? 
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(t) 

Challenge 2: Data is streaming 

n  Assumption thus far: Batch data 

n  But, click prediction is a streaming data task: 
¨  User enters query, and ad must be selected: 

n  Observe xj, and must predict yj 

¨  User either clicks or doesn’t click on ad: 
n  Label yj is revealed afterwards 

¨  Google gets a reward if user clicks on ad 

 
¨  Weights must be updated for next time: 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., hinge loss, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
©Emily Fox 2014 19 
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Gradient ascent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient ascent rule: 

 
n  How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 

©Emily Fox 2014 21 
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Stochastic Gradient Ascent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find maximum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point xt 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of each gradient step is constant in number of examples! 
n  In general, step size changes with iterations 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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Convergence rate of SGD 

n  Theorem:  
¨  (see Nemirovski et al ‘09 from readings) 
¨  Let f be a strongly convex stochastic function 
¨  Assume gradient of f is Lipschitz continuous and bounded 

¨  Then, for step sizes: 

¨  The expected loss decreases as O(1/t): 
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Convergence rates for gradient 
descent/ascent versus SGD 

n  Number of Iterations to get to accuracy 

n  Gradient descent: 
¨  If func is strongly convex: O(ln(1/ϵ)) iterations 
 

n  Stochastic gradient descent: 
¨  If func is strongly convex: O(1/ϵ) iterations 

n  Seems exponentially worse, but much more subtle: 
¨  Total running time, e.g., for logistic regression: 

n  Gradient descent: 
n  SGD: 
n  SGD can win when we have a lot of data 

¨  And, when analyzing true error, situation even more subtle… expected 
running time about the same, see readings 
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Motivating AdaGrad (Duchi, Hazan, Singer 2011) 

n  Assuming               , standard stochastic (sub)gradient 
descent updates are of the form: 

n  Should all features share the same learning rate? 

n  Often have high-dimensional feature spaces 
¨  Many features are irrelevant 
¨  Rare features are often very informative 

n  Adagrad provides a feature-specific adaptive learning rate by 
incorporating knowledge of the geometry of past observations 
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Why adapt to geometry?

Hard

Nice

y

t

�

t,1 �

t,2 �

t,3

1 1 0 0
-1 .5 0 1
1 -.5 1 0
-1 0 0 0
1 .5 0 0
-1 1 0 0
1 -1 1 0
-1 -.5 0 1

1 Frequent, irrelevant

2 Infrequent, predictive

3 Infrequent, predictive

Duchi et al. (UC Berkeley) Adaptive Subgradient Methods ISMP 2012 8 / 32

x

x

x
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Examples from 
Duchi et al. 
ISMP 2012 

slides 
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Why Adapt to Geometry? 

Not All Features are Created Equal 

n  Examples: 
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Motivation

Text data:

The most unsung birthday

in American business and

technological history

this year may be the 50th

anniversary of the Xerox

914 photocopier.

a

aThe Atlantic, July/August 2010.

High-dimensional image features

Other motivation: selecting advertisements in online advertising,
document ranking, problems with parameterizations of many
magnitudes...

Duchi et al. (UC Berkeley) Adaptive Subgradient Methods ISMP 2012 3 / 32

Images from Duchi et al. ISMP 2012 slides 
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Projected Gradient 

n  Brief aside… 

n  Consider an arbitrary feature space 

n  If   , can use projected gradient for (sub)gradient 
descent 
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Regret Minimization 

n  How do we assess the performance of an online algorithm? 

n  Algorithm iteratively predicts 
n  Incur loss   
n  Regret:  

What is the total incurred loss of algorithm relative to the best 
choice of        that could have been made retrospectively 
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Regret Bounds for Standard SGD  

n  Standard projected gradient stochastic updates: 

n  Standard regret bound: 
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Projected Gradient using Mahalanobis 

n  Standard projected gradient stochastic updates: 

n  What if instead of an L2 metric for projection, we considered 
the Mahalanobis norm 

w(t+1) = arg min
w2W

||w � (w(t) � ⌘gt)||22

w(t+1) = arg min
w2W

||w � (w(t) � ⌘A�1gt)||2A
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Mahalanobis Regret Bounds 

n  What A to choose?   

n  Regret bound now: 

n  What if we minimize upper bound on regret w.r.t. A in hindsight? 
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Mahalanobis Regret Minimization 

n  Objective: 

n  Solution:  

    For proof, see Appendix E, Lemma 15 of Duchi et al. 2011. 
     Uses “trace trick” and Lagrangian. 
 
n  A defines the norm of the metric space we should be operating in 
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AdaGrad Algorithm 

n  At time t, estimate optimal (sub)gradient modification A by 

n  For d large, At is computationally intensive to compute.  Instead, 

n  Then, algorithm is a simple modification of normal updates: 
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AdaGrad in Euclidean Space 

n  For       , 
 
n  For each feature dimension, 

    where  

n  That is, 

n  Each feature dimension has it’s own learning rate! 
¨  Adapts with t 
¨  Takes geometry of the past observations into account 
¨  Primary role of η is determining rate the first time a feature is encountered  
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AdaGrad Theoretical Guarantees 

n  AdaGrad regret bound: 

n  So, what does this mean in practice? 

n  Many cool examples.  This really is used in practice! 
n  Let’s just examine one… 
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AdaGrad Theoretical Example 

n  Expect to out-perform when gradient vectors are sparse 

n  SVM hinge loss example:  
                                                          where 

n  If xj
t ≠ 0 with probability 

n  Previously best known method:  
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Neural Network Learning
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SGD
GPU
Downpour SGD
Downpour SGD w/Adagrad
Sandblaster L−BFGS

(Dean et al. 2012)

Distributed, d = 1.7 · 109 parameters. SGD and AdaGrad use 80
machines (1000 cores), L-BFGS uses 800 (10000 cores)

Duchi et al. (UC Berkeley) Adaptive Subgradient Methods ISMP 2012 26 / 32

Neural Network Learning

Wildly non-convex problem:

f(x; ⇠) = log (1 + exp (h[p(hx1, ⇠1i) · · · p(hx
k

, ⇠

k

i)], ⇠0i))

where

p(↵) =

1

1 + exp(↵)

�1 �2 �3 �4�5

x1 x2 x3 x4 x5

p(hx1, �1i)

Idea: Use stochastic gradient methods to solve it anyway

Duchi et al. (UC Berkeley) Adaptive Subgradient Methods ISMP 2012 25 / 32

Neural Network Learning 

n  Very non-convex problem, but use SGD methods anyway 
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Neural Network Learning
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Images from Duchi et 
al. ISMP 2012 slides 

What you should know about Logistic 
Regression (LR) and Click Prediction 

n  Click prediction problem: 
¨  Estimate probability of clicking 
¨  Can be modeled as logistic regression 

n  Logistic regression model: Linear model 
n  Gradient ascent to optimize conditional likelihood 
n  Overfitting + regularization 
n  Regularized optimization 

¨ Convergence rates and stopping criterion 
n  Stochastic gradient ascent for large/streaming data 

¨ Convergence rates of SGD 
n  AdaGrad motivation, derivation, and algorithm 
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