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Case Study 1: Estimating Click Probabilities 

Ad Placement Strategies 

n  Companies bid on ad prices 

n  Which ad wins? (many simplifications here) 
¨  Naively:  

¨  But: 

¨  Instead: 
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Key Task: Estimating Click Probabilities 

n  What is the probability that user i will click on ad j 

n  Not important just for ads: 
¨ Optimize search results 
¨ Suggest news articles 
¨ Recommend products 

n  Methods much more general, useful for: 
¨ Classification 
¨ Regression  
¨ Density estimation 
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Learning Problem for Click Prediction 

n  Prediction task: 
 
n  Features: 

 
 
 
n  Data: 

¨  Batch: 
 
 
¨  Online: 

 
n  Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision 

trees, boosting,…) 
¨  Focus on logistic regression; captures main concepts, ideas generalize to other approaches 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨ Assume a particular functional form 
¨ Sigmoid applied to a linear function 

of the data: 

Z 

Features can be discrete or continuous! 
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Very convenient! 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {y1,…,yR} 

 for k<R 
 
 
 

 for k=R (normalization, so no weights for this class) 
 
 
 

Features can be discrete or continuous! 
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Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 
n  Discriminative (logistic regression) loss function: 

 Conditional Data Likelihood 

8 ©Emily Fox 2014 



5 

Expressing Conditional Log Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent much better (see reading) 

Gradient: 

Step size, η>0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i = 1,…,d,  

 

 

repeat    

12 ©Emily Fox 2014 

(t) 

(t) 



7 

Regularized Conditional Log Likelihood 

n  If data is linearly separable, weights go to infinity 
n  Leads to overfitting à Penalize large weights 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Stopping criterion 

n  Regularized logistic regression is strongly concave 
¨  Negative second derivative bounded away from zero: 

n  Strong concavity (convexity) is super helpful!! 

n  For example, for strongly concave l(w): 
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Convergence rates for gradient 
descent/ascent 

n  Number of Iterations to get to accuracy 

n  If func Lipschitz: O(1/ϵ2) 

n  If gradient of func Lipschitz: O(1/ϵ) 

n  If func is strongly convex: O(ln(1/ϵ)) 
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Challenge 1: Complexity of 
computing gradients 

n  What’s the cost of a gradient update step for LR??? 
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(t) 

Challenge 2: Data is streaming 

n  Assumption thus far: Batch data 

n  But, click prediction is a streaming data task: 
¨  User enters query, and ad must be selected: 

n  Observe xj, and must predict yj 

¨  User either clicks or doesn’t click on ad: 
n  Label yj is revealed afterwards 

¨  Google gets a reward if user clicks on ad 

 
¨  Weights must be updated for next time: 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., hinge loss, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
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Gradient ascent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient ascent rule: 

 
n  How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 
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Stochastic Gradient Ascent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find maximum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point xt 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of each gradient step is constant in number of examples! 
n  In general, step size changes with iterations 

©Emily Fox 2014 22 



12 

Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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