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Case Study 3: fMRI Prediction 

Scaling Up LASSO Solvers 

n  A simple SCD for LASSO (Shooting) 
¨  Your HW, a more efficient implementation! J 
¨  Analysis of SCD 

n  Parallel SCD (Shotgun) 
n  Other parallel learning approaches for linear models 

¨  Parallel stochastic gradient descent (SGD) 
¨  Parallel independent solutions then averaging 

n  ADMM 
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Stochastic Coordinate Descent for LASSO 
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate j at random 

n  Set: 

n  Where:  

©Emily Fox 2014 3 

�̂j =

8
<

:

(cj + �)/aj cj < ��
0 cj 2 [��,�]

(cj � �)/aj cj > �

cj = 2
NX

i=1

x

i
j(y

i � �

0
�jx

i
�j)aj = 2

NX

i=1

(xi
j)

2

Shotgun: Parallel SCD [Bradley et al ‘11] 

Shotgun (Parallel SCD) 

While not converged, 
" On each of P processors, 
" Choose random coordinate j, 
" Update βj (same as for Shooting) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Is SCD inherently sequential? 

Coordinate update: 

β j ← β j +δβ j

(closed-form minimization) 
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Collective update: 
δβi

δβ j

0
0

0

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Convergence Analysis 
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Theorem: Shotgun Convergence 

Assume 

€ 

P < d /ρ +1
where  

€ 

ρ = spectral radius of XTX 

Nice case: 
Uncorrelated 
features 

ρ = __⇒ Pmax = __

Bad case: 
Correlated 
features 
ρ = __⇒ Pmax = __(at worst) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Stepping Back… 
n  Stochastic coordinate ascent 

¨  Optimization: 

¨  Parallel SCD: 

¨  Issue: 

¨  Solution: 

n  Natural counterpart: 
¨  Optimization: 

¨  Parallel 

¨  Issue: 

¨  Solution: 
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Parallel SGD with No Locks        [e.g., Hogwild!, Niu et al. ‘11]  
n  Each processor in parallel: 

¨  Pick data point i at random 
¨  For j = 1…p:  

n  Assume atomicity of: 
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Addressing Interference in Parallel SGD 

n  Key issues: 
¨  Old gradients 

¨  Processors overwrite each other’s work 

n  Nonetheless:  
¨  Can achieve convergence and some parallel speedups  
¨  Proof uses weak interactions, but through sparsity of data points 
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Problem with Parallel SCD and SGD 

n  Both Parallel SCD & SGD assume access to current estimate of 
weight vector 

n  Works well on shared memory machines 

n  Very difficult to implement efficiently in distributed memory 

n  Open problem: Good parallel SGD and SCD for distributed setting… 
¨  Let’s look at a trivial approach 
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Simplest Distributed Optimization 
Algorithm Ever Made 

n  Given N data points & P machines 
n  Stochastic optimization problem: 
n  Distribute data: 

n  Solve problems independently 

n  Merge solutions 

n  Why should this work at all???? 
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For Convex Functions… 
n  Convexity: 

n  Thus: 
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Hopefully… 
n  Convexity only guarantees: 

n  But, estimates from independent data! 
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The average mixture algorithm

Two pictures:

θ̂1
θ̂2

θ̂3
θ̂4

Duchi (UC Berkeley) Communication Efficient Optimization CDC 2012 7 / 21

Figure from John Duchi 

Analysis of Distribute-then-Average        [Zhang et al. ‘12]  

n  Under some conditions, including strong convexity, lots of 
smoothness, and more…  

n  If all data were in one machine, converge at rate: 

n  With P machines, converge at a rate: 
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Tradeoffs, tradeoffs, tradeoffs,… 
n  Distribute-then-Average: 

¨  “Minimum possible” communication 
¨  Bias term can be a killer with finite data  

n  Issue definitely observed in practice 
¨  Significant issues for L1 problems: 

n  Parallel SCD or SGD 
¨  Can have much better convergence in practice for multicore setting 
¨  Preserves sparsity (especially SCD) 
¨  But, hard to implement in distributed setting 
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Alternating Directions Method of Multipliers 

n  A tool for solving convex problems with separable 
objectives: 

n  LASSO example: 

n  Know how to minimize f(β) or g(β) separately  
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ADMM Insight 

n  Try this instead: 

n  Solve using method of multipliers 
n  Define the augmented Lagrangian: 

¨  Issue:  L2 penalty destroys separability of Lagrangian 
¨  Solution:  Replace minimization over (x, z) by alternating 

minimization  
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ADMM Algorithm 

n  Augmented Lagrangian: 

n  Alternate between: 

1.  x  

2.  z   
 
3.  y  
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L⇢(x, z, y) = f(x) + g(z) + y

T (x� z) +
⇢

2
||x� z||22
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ADMM for LASSO 

n  Objective: 

n  Augmented Lagrangian: 
 

n  Alternate between: 

1.  β  

2.  z   
 
3.  a  
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L⇢(x, z, y) = f(x) + g(z) + y

T (x� z) +
⇢

2
||x� z||22

L⇢(�, z, a) =

ADMM Wrap-Up 

n  When does ADMM converge? 
¨  Under very mild conditions 
¨  Basically, f and g must be convex 

n  ADMM is useful in cases where 
¨  f(x) + g(x) is challenging to solve due to coupling 
¨  We can minimize 

n  f(x) + (x-a)2 

n  g(x) + (x-a)2 

 
n  Reference 

¨  Boyd, Parikh, Chu, Peleato, Eckstein (2011) “Distributed optimization and 
statistical learning via the alternating direction method of multipliers.” 
Foundations and Trends in Machine Learning, 3(1):1-122. 
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What you need to know 

n  A simple SCD for LASSO (Shooting) 
¨  Your HW, a more efficient implementation! J 
¨  Analysis of SCD 

n  Parallel SCD (Shotgun) 
n  Other parallel learning approaches for linear 

models 
¨  Parallel stochastic gradient descent (SGD) 
¨  Parallel independent solutions then averaging 

n  ADMM 
¨  General idea 
¨  Application to LASSO 
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