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Scaling Up LASSO Solvers
* JEE
m A simple SCD for LASSO (Shooting)

Your HW, a more efficient implementation! ©
Analysis of SCD

m Parallel SCD (Shotgun)
m Other parallel learning approaches for linear models

Parallel stochastic gradient descent (SGD)
Parallel independent solutions then averaging

= ADMM

ooooooooooooo




Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N
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m Repeat until convergence
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ShOtgun: Para”el SCD [Bradley et al *11]
" J

(Lasso: minF(B) where F(B)=IXp-yIE+AIBI, |

l

Shotgun (Parallel SCD) \/LS .
While not converged, Featrires
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» On each of P processors,

o Choose random coordinate j,
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» Update B ; (same as for Shooting) AN —
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Is SCD inherently sequential?
" JE—
| Lasso: minF(f) where  F(B)=IXB-yIE +211 1, |

Coordinate update:
B, < B;+3p;

(closed-form minimization)

Collective update:

6(? i there ore inker Ferentes in
AB=| 0 these updates (£ fatwre)
6(/)3/' Are corr.

Can we quan’dFy this!

ly Fox 2014

Convergence Analysis
" A
| Lasso: minF(B) where  F(B)=IXp-yIi +A1 Bl |
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Stepping Back...
" JEEE—

m  Stochastic coordinate ascent 5S¢ D . .
1 Optimization: P\Lk a coord. ) v fir\t‘ Mén
J

O Parallel SCD: pick ? coord.
‘:-:__'
. . ctra
DIssue pppdi o ge mony interSere on D"L_/'J Sﬁ't’ s
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= Natural counterpart: & 6 D
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[ Issue:
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Parallel SGD with No Locks

[e.g., Hogwild!, Niu et al. “11]
—

m Ea i allel:
[ Pick data point i at random
o Forj=1...p:

—‘g(/ /3" -N (VF(Y‘/B))J

S

= Assume atomicity of: 6 - ﬁ ra
J v
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Addressing Interference in Parallel SGD
" JEE

. )
m Key issues: t.B8 e
DyOId gradients . ‘Vf__(x " ~) bﬁ"’ MO,J(',€I£D
D A7 s gV W g BT
?Ill-t‘”’5 ’ ’6 us":iﬂ 4 L&J)
-’ A k3
. L. ) redh {
@ T8 Y p
1 Processors overwrite each other’s work
)

m Nonetheless:
01 Can achieve convergence and sol rallel speedups
1 Proof uses weak interactions, but through sparsity of data points

B Lo
Sparsity of X is ksf
. the 0n0~|y§is
\,PJu-.. W oexack Lor tws X“'_s

Lhat JG not SL\MI_ My supper™ f@'
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Problem with Parallel SCD and SGD
* JEE
m Both Parallel SCD & SGD assume access to current estimate of

weight vector
Cast petsss /S rs is “/
by A“ ‘ofod—ﬁ”

m Works well on shared memory machines multicore

m Very difficult to implement efficiently in distributed memory Clb"J
S —

L7 Nl (/L_ g‘ow &. "

P . . 1o

- "\ A connee

m  Open problem: Good parallel SGD and SCD for distributed setting...

1 Let’s look at a trivial approach A qeme wore VU7
wecantly
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Simplest Distributed Optimization

_ Alﬁorithm Ever Made

v
m  Given N data points & P machines o\ s )
m  Stochastic optimization problem: Min F('S) "‘T\', ?:F (X 1'e
» Distribute data: P machines A

Lom\j lye roblem Dz
Con solves o pro

N o

04(\0\‘/\ @ @ |D¥| = /"\Pl_ =N

m  Solve problems independently

¢ . .
mochoe ‘M(J 2sk. ﬂ{ ). min \/r\ Z FCY‘,/@)
k I AeDy

m  Merge solutions
- (k)
lg z L— Zﬁ
P

m  Why should this work at all????

For Convex Functions...

= Convexity: )4 F(AA 2
\eh DIz
8

m Thus: l ¢

ok (€83, F(4)) 2 F(B)

b
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Hopefully... T et

m  Convexity only guarantees:

F(E) 2 vax F(AY)
k

m  But, estimates from independent data!
’m

e
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7
‘("\\‘s L,o u'\A .

Figure from John Duchi
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Analysis of Distribute-then- e

[Zhang et al. “12]
————
" JEEE
m Under some conditions, including strongﬁconvexity, lots of Y

smoothness, and more... Ay ‘\M)g"ﬂ i S 'F(x‘} A)

N Az
m [f all data were in one machine, converge at rate:

Ei“ﬁ:w ﬁ" “; ’] - 0[,!_\13 o o o waeling

/ 4 obs
m  With P machines, converge at a rate: N &
———————
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Tradeoffs, tradeoffs, tradeoffs,...
= JEEE
nll ‘mJA

m Distribute-then-Average:
e o L / a0c
Minimum possible” communication ;u\ﬁ¥ me gL L
Bias term can be a killer with finite data
= Issue definitely observed in practice A~~~ PflV- re (V.lt'j re As‘y .
Significant issues for L1 problems:

Warsi™y PAtEns T machine 4 can be very
MGC’ from those i~ wmachine J = avefage A Con

= Parallel SCD or SGD lbse “cprrirty

Can have much better convergence in practice for multicore setting
Preserves sparsity (especially SCD)
But, hard to implement in distributed setting
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Alternating Directions Method of Multipliers
" JEE
m A tool for solving convex problems with separable
objectives: -
X

ath
ap?“ ks
ot List
m LASSO example: ‘;;gmag :
2 I {eae
mig 2 \ \I')(/g\l, « AlAl, % ore o
the” vy
f W 9(8) kst ?;(o,:)«
m Know how to minimize f(8) or g(B) separately o lesf

Co"‘?“"ﬁ ?rl.swi‘s (_‘sal(‘nﬁg_) /’/“"SZ"D)
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ADMM Insight
* JE—
m Try this instead:
min i“ﬂ*ﬁ(%” st X T

X,z qell conVeX

m Solve using method of multipliers 5. consT”
m Define the augmented Lagrangian: v

LP(X,?,V) = { ()4 glz)* \,T(x»zf) v /% I w-z\,

Issue: L2 penalty destroys separability of Lagrangian

Solution: Replace minimization over (X, z) by alternating
minimization
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ADMM Algorithm
" JEE
m Augmented Lagrangian:

Ly(@,2,y) = f(@) +9(z) +y" (z = 2) + Ella = 2|1
m Alternate between:
X € p.v’lsm"" Lp“/*z"{)
X
~1 (/:E y
z€ Arpymin Lp (% //)
ye y o+ ;o(Y'?B
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ADMM for LASSO

" o (¢ +v) = [(@) + 9() + o7 (= 2) + Gl — 2]

m Objective: N i
S TR LA C A
i
m Augmented Lagrangian:

all
L,(B,2,a) = %,lly')(é]l:* sl 4 J(B-E) é//zf 2l,

?rMMP“{"- g\; stribute
m Alternate between:

ExepT) Xyt -2 )
B € @.rqlsm'w\ Lf(ﬁ,?/&) z (X Xklo > X Y*‘o

a A
7 & arqmi'\ Lplﬁ,?‘,ﬁ): g(ﬂ" P ) 7 )
? T sta,0y= sign (a) (lﬁ\‘c)-v
a€ o+ (ﬁ’%> So‘:&v‘u«a.s‘q olanj
Por dist iveed vrsion, see caper. .
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ADMM Wrap-Up
" JEE
m When does ADMM converge?

Under very mi itions

Basically, fand g must be convex
v—’\

m ADMM is useful in cases where

f(x) + g(x) is challenging to solve due to coupling
We can minimize

n f(x) + (x-a)?
= g(x) + (x-a)?

m Reference

Boyd, Parikh, Chu, Peleato, Eckstein (2011) “Distributed optimization and
statistical learning via the alternating direction method of multipliers.” {
Foundations and Trends in Machine Learning, 3(1):1-122.
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What you need to know
* JEE
m A simple SCD for LASSO (Shooting)

Your HW, a more efficient implementation! ©
Analysis of SCD

m Parallel SCD (Shotgun)

m Other parallel learning approaches for linear
models
Parallel stochastic gradient descent (SGD)
Parallel independent solutions then averaging
s ADMM

General idea
Application to LASSO
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